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Resumo

Um novo modelo de campos dinâmicos neuronais que suporta
padrões de atividade estáveis com um contínuo de valores de
amplitude: Análise e Aplicações

Esta tese introduz um novo modelo de campos dinâmicos neuronais (DNFs) capaz de representar

e memorizar integralmente todas as entradas externas de uma forma robusta. DNFs, expressas como

equações integro-diferenciais, têm sido utilizados desde 1950 para descrever a atividade de populações

neuronais de grande escala no córtex, sendo o modelo introduzido por Amari na década de 1970 o mais

utilizado. Ao acoplar dois campos do tipo Amari, construímos um modelo que permite a integração

temporal contínua das entradas externas. O novo modelo supera a insuficiência das equações clássicas

de DNFs, cujas soluções, inicialmente desencadeadas por entradas externas, não preservam quaisquer

características das entradas. Primeiramente, foram analisadas rigorosamente as soluções de uma e de

múltiplas regiões localmente excitadas tanto do modelo de Amari como do novo modelo em uma e duas

dimensões espaciais, utilizando análise de estabilidade linear e técnicas de continuação numérica. Em

aplicações de neurociência cognitiva, comparamos a formação de soluções orientadas por entrada externa

em ambos os modelos, utilizando simulações numéricas de tarefas de memória de múltiplos itens. Um

foco específico é a aprendizagem neuro-plausível e a reprodução de intervalos de tempo utilizando o

integrador neuronal. DNFs têm sido amplamente aplicados na robótica com o objectivo de dotar os robôs

com capacidades cognitivas. Os dois últimos capítulos são dedicados a aplicações da robótica industrial.

A primeira experiência envolve uma tarefa cooperativa em que o robô aprende a ordem de entrega de

diferentes objetos a um operador. O segundo exemplo é uma tarefa de pesquisa de objetos em que o

robô tem de tomar decisões sob incerteza, com base em provas acumuladas de ensaios anteriores.

Palavras-chave: campos dinâmicos neuronais, continuação numérica, integrador neuronal, memória

de trabalho, robótica cognitiva
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Abstract

A novel dynamic field model supporting a continuum of bump
amplitudes: Analysis and Applications

This thesis introduces a novel dynamic neural field model capable of representing and memorizing the

integral of previous inputs in a robust way. Neural field models have been used since the 1950s to describe

the activity of large-scale neuronal populations in the cortex. They are typically cast as integro-differential

equations, with one of the most commonly used formulation being the model introduced by Amari in the

1970s. By coupling two fields of Amari type, we construct a model that provides a continuous attractor to

perform temporal integration of inputs. The new model overcomes the shortcoming of classical neural field

equations, whose solutions, initially triggered by external inputs, do not preserve input characteristics like

for example intensity or duration. In the first part of this thesis, we rigorously analyze single and multi-bump

solutions of both the Amari model and the new two-field model in one and two spatial dimensions, using

linear stability analysis and numerical continuation techniques. In cognitive neuroscience applications, we

systematically compare the formation of input-driven solutions in both models using numerical simulations

of multi-item memory tasks. A specific focus is on the neuro-plausible learning and reproduction of time

intervals using the neural integrator. Dynamic neural field models have been also extensively applied in

the domain of robotics, with the goal to endow autonomous robots with cognitive abilities. The last two

chapters are devoted to real-world robotics applications in modern manufacturing environments. The first

experiment is a human-robot cooperation in an assembly task in which the robot learns the serial order

of handing over different objects to a human operator. The second example is an object search task in

which the autonomous robot has to make trial-by-trial decisions under uncertainty based on accumulated

evidence from previous trials.

Keywords: cognitive robotics, dynamic neural field, neural integrator, numerical continuation, working

memory
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1Introduction and outline

Dynamic neural fields models describe the mean firing activity in large neuronal populations within the

cortex. They are formalized as nonlinear integro-differential equations, describing the evolution of neuronal

activity in terms of time, and one or two spatial dimensions. Developed already in the 1970s to study

pattern formation in neural tissue, the model family is still very popular in theoretical neuroscience since

the mathematical formulations are simple enough to support analytical treatment. At the same time,

neural field models have been used in the past to explain key aspects of neural population dynamics as

observed in various neurophysiological studies.

A particularly successful formulation of a neural field was provided by Amari in 1977. He studied

the existence and stability of spatially localized activity patterns, or bumps, that emerge in response to

sufficiently strong external input applied to the neurons in the field. A bump persists after the transient

input is no longer present due to strong recurrent excitation and inhibition within the neural network. Since

bumps are input specific, they have been frequently used to model the neural mechanisms supporting a

working memory function.

A known shortcoming of classical neural field models, like for instance Amari’s formulation, is their

inability to represent input features such as strength and duration in the self-sustained activity pattern.

The unique bump shape is exclusively determined by the parameters of the spatial interactions within the

neural population.

The focus of this thesis is to address this issue by developing, analyzing and applying a novel neural

field model supporting the existence of bumps with a continuum of amplitudes and shapes. These attractor

states can be used for instance to explain the neural integration of external inputs of any strength and

duration.
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CHAPTER 1. INTRODUCTION AND OUTLINE

The remainder of this thesis is structured as follows.

Chapter 2 provides a general introduction to the neural field models. We begin with a short historical

overview of the neuronal modeling describing the activity of the brain on different spatial scales, from

single cells to the whole cortex. We then discuss two of the most commonly used neural field models,

namely the Wilson and Cowan model and the Amari model. We introduce the reader to the concept of

working memory and explain how the neural activity that is believed to underpin this process is modeled

using so-called bump attractors. The chapter ends with some general remarks on neural field models.

Chapter 3 introduces the Dynamic Field Theory (DFT), a biologically inspired theoretical framework

used for modeling neuronal processes that account for a large number of behaviors and cognitive capac-

ities. We discuss some differences between this framework and the neural field models presented in the

previous chapter. DFT has been extensively used in the domain of cognitive robotics, since it provide

means for endowing autonomous robots with high-level cognitive functions. We review the DFT approach

to robotics and explain how neural fields are used to build complex control architectures. Finally, we dis-

cuss some of the shortcomings of the classical models that motivated the need for a new type of neural

field model introduced in this thesis.

Chapter 4 Motivated by the shortcomings of the classical neural field models, we introduce our new

model that is constructed by coupling together two equations of Amari type. We explain in detail the

derivation of the novel model and analyze solutions of a space-clamed version of the model.

Chapter 5 We analyze the existence and stability of stationary bump solutions of the Amari model.

To this end we employ three different approaches: Amari’s linear stability analysis, a Lyapunov method

for the one-dimensional model, and Pinto’s and Ermentrout’s stability analysis for one and two spatial

dimensions.

Chapter 6 We apply the three stability analysis methods to the new two-field model introduced in

Chapter 4. We conclude that all three approaches yield qualitatively similar results for both model classes.

Chapter 7 The focus is on the numerical analysis of single- and multi-bump solutions of both the

Amari model and the two-field model. In particular, we employ numerical continuation techniques to find

localized solutions in both models, determine their stability and follow them as the model parameters vary.
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We begin with an overview of the pseudo-arclength continuation method and present the problem setting.

Using a classical Mexican hat connectivity function, we find some interesting differences between the two

models and explain how the initial conditions affect the pattern formation process. We then investigate the

bifurcation structure in the models when an oscillatory interaction kernel is used, and find that in this case

both models support the existence of multi-bump solutions. It is further shown that the so-called snaking

phenomenon occurs in both models. We also discuss how the obtained results relate to those described

in the previous chapter.

Chapter 8 is concerned with input-induced multi-bump solutions and their application to working mem-

ory modeling. The necessary conditions for the existence and stability of multi-bump solutions of the

two-field model are given in the beginning of the chapter. We then systematically compare the pattern

formation process in the Amari model and the two-field model in tasks with multiple memory items. We

investigate how input-induced variations of the memory strength affect the inference of nearby memory

traces and their spatial drift in response to random activity fluctuations.

Chapter 9 introduces an application of the two-field model for measuring and reproducing time inter-

vals. We begin with introducing an interval reproduction task in which monkeys learn to measure and

subsequently reproduce temporal intervals. Inspired by this experiment, we test in a series of numerical

simulations the ability of the new model to accumulate external input over time during the measurement

phase of the task. During the interval production phase, the stored information is used to reproduce the

time interval either by adjusting input strength or initial condition of the neural integrator. Finally, we

discuss the impact of the result on our goal to endow robots with advanced temporal cognition capacities.

Chapter 10 presents a dynamic neural field (DNF) model for sequence learning and planning of a

robotics assistant. We test the DNF architecture in an assembly task in which a robot learns rapidly by

observation the sequential order of object transfers between an assistant and an operator to subsequently

substitute the assistant in the joint task. The results show that the robot is able to proactively plan the

series of handovers in the correct order.

Chapter 11 introduces a DNF model of value-based decision making of an autonomous robot in a

simulated factory environment. We test the model in the scenario in which a mobile robot searches at two

different workbenches a specific object to deliver it to an operator. We show that the robot achieves a high
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search efficiency in stationary as well as dynamic environments based on the accumulated evidence from

previous trials.

Chapter 12 The final chapter summarizes the contribution of the work presented in this thesis and

discusses possible directions for future research.

Appendix A discusses the methods used for numerical simulations and provides some examples of

source codes implemented in MATLAB and Julia.

Appendix B gives initial conditions and parameters used in Chapters 10 and 11.
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2Neural field modeling

2.1 From models of a single neuron to population modeling

Ever since the pioneering work of the neuroanatomist Santiago Ramón y Cajal in the late nineteenth century

it is known that the fundamental units comprising the human brain are neurons [122]. His observations

resulted in hundreds of drawings illustrating neuronal cells in cortical tissue, one of which we show in Figure

1. This drawing gives only a glimpse of the enormous number of neurons in the cortex and complexity

of connections between them. The human brain is estimated to contain 86 billion neurons and a similar

Figure 1: The reproduction of a drawing by Santiago Ramón y Cajal from Comparative study of the sensory
areas of the human cortex (1899) showing neurons in the human cortex that he observed under the
microscope.
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number of non-neuronal glia cells [10]. Neurons consist of three functionally distinct parts: the cell body,

or soma, the dendrites and the axon. Dendrites collect input signals from other neurons and pass them

to the cell body. The collected signals are integrated in the cell body, and if the total arriving input exceeds

a certain threshold, then neuron generates an output signal. This output signal, referred to as an action

potential, or a spike, is a short burst of electrical activity that is transmitted through the axon to other

neurons. The junction between the axon of one neuron and the dendrite of another neuron is called the

synapse. The neuron sending the signal is referred to as the presynaptic cell and the receiving neuron as

the postsynaptic cell. A schematic of a neuron is shown in Figure 2a.

Mathematical modeling of neural processes is one of the approaches toward advancing our understanding

of how the brain works. The first model of neuronal activity was perhaps the model of frog nerve stimulation

proposed by Lapicque in 1907 [102]. The model was phenomenological in nature, i.e. it did not aim to

capture the details of neuron’s electrophysiology. It has been a starting point for developing a class of

integrate-and-fire models, that are still widely used today (see [26] for a recent review).

For modeling the behavior of a single neuron perhaps the most iconic work is due to Hodgkin and Huxley

in the early 1950’s. They performed a series of experiments on the giant axon of the squid, and used

the results to develop a model describing the generation and propagation of action potentials [77]. Action

potentials are the result of currents passing through the ion channels, that Hodgkin and Huxley measured

and described their dynamics in terms of differential equations. This work paved the way to the formulation

of more detailed biophysical neuron models (see [128]) and led to the Nobel Prize for Hodgkin and Huxley

in 1963. Some other canonical models of a single neuron include the FitzHugh-Nagumo model [59,

117], the Morris-Lecar model [116], and the quadratic integrate-and-fire model [103], to name only a few

examples.

Models of neuronal activity may concern structures on different spatial scales (see Figure 2b). Examples

that we briefly described above concern the microscopic scale, that includes modeling single cells or

subcellular structures. When the population comprising large number of neurons with similar properties

is considered, we speak of mesoscopic spatial scale. At this scale it is assumed that the behavior of each

individual cell is irrelevant and the focus is on the collective dynamics of entire population. This approach

is known as neural mass modeling, i.e., describing large number of cells by low-dimensional models,

usually using systems of ordinary differential equations (ODEs). The neural mass models considered in

the literature are typically variants of the Wilson-Cowan model [166] introduced to study temporal evolution
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2.1. FROM MODELS OF A SINGLE NEURON TO POPULATION MODELING

Figure 2: (a) Schematic of a neuron illustrating its three main components: the dendrites, the cell body
and the axon. From [122], pp. 3, Fig. 1.2E. (b) Different spatial scales in neuronal modeling. From
Scientific American, vol. 306, no. 6, pp. 54.

of mean firing rates of interacting excitatory and inhibitory populations of neurons1. Similar to first models

of single neurons, this is a phenomenological model, i.e. it only describes the firing rates, and does not

account for the biophysical details of neural firing. Neural mass models that include more realistic aspects

of interacting neural populations have been successfully used to explain neuroimaging data. One example

of such approach is the work of Jansen and Rit, who considered strengths of intra-population connections

taking into account the anatomy of the cortex and used the resulting model to investigate epileptic seizures

[82].

Average mean activity of neuronal populations in neural mass models is studied as a function of time only.

When the spatial component is taken into account and it is continuous, we speak of neural field models.

These models are usually cast as nonlocal differential equations and are used to model neural activity

at the macroscopic scale. Neural fields are the focus of this Thesis and in what follows we provide the

historical overview of neural field theories.

The first neural field theory dates back to the 1950’s and the work of Beurle [14]. His formulation accounted

for a continuum approximation of the network of purely excitatory cells and was capable of supporting

1The Wilson-Cowan neural field model that we discuss later is a spatial extension of this local neural mass model, although
Wilson and Cowan did not use the term neural mass explicitly.
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CHAPTER 2. NEURAL FIELD MODELING

various forms of activity with spatial and temporal organization, including plane waves, spherical and

circular waves and vortices. The activity patterns in Beurle’s model were shown to be unstable, meaning

that as a consequence of any deviation form the equilibrium the activity either dies out or saturates.

Stabilizing brain activity can be achieved by incorporating inhibition in the model, which was later done

by Griffith [69]. This approach did not prove successful, mainly because it did not account for excitatory

and inhibitory synaptic connections explicitly. The formulation of neural field models that is commonly

used today is due to work of Wilson and Cowan in the 1970’s. They proposed a model with two inter- and

self-connected layers of excitatory and inhibitory neurons which is considered a cornerstone of neural field

models that are in use today. We discuss the iconic work of Wilson and Cowan below.

2.2 Wilson-Cowan model

The Wilson-Cowan model was first introduced in network (or space-clamped) form in [166], followed by

a spatially extended (or continuum) version of the model in [167]. The latter can be written as a pair of

partial integro-differential equations

𝜏𝐸
𝜕𝑢𝐸 (𝑥, 𝑡)

𝜕𝑡
= −𝑢𝐸 (𝑥, 𝑡)+

𝑓𝐸

(∫
ℝ

𝑤𝐸𝐸 (𝑥 − 𝑦)𝑢𝐸 (𝑦, 𝑡)d𝑦 −
∫
ℝ

𝑤𝐼𝐸 (𝑥 − 𝑦)𝑢𝐼 (𝑦, 𝑡)d𝑦 + 𝐼𝐸 (𝑥, 𝑡)
)
,

(2.1a)

𝜏𝐼
𝜕𝑢𝐼 (𝑥, 𝑡)
𝜕𝑡

= −𝑢𝐼 (𝑥, 𝑡)+

𝑓𝐼

(∫
ℝ

𝑤𝐸𝐼 (𝑥 − 𝑦)𝑢𝐸 (𝑦, 𝑡)d𝑦 −
∫
ℝ

𝑤𝐼 𝐼 (𝑥 − 𝑦)𝑢𝐼 (𝑦, 𝑡)d𝑦 + 𝐼𝐼 (𝑥, 𝑡)
)
.

(2.1b)

This two-layer model describes the activity of excitatory and inhibitory populations of neurons coupled

together. We now discuss the various terms that appear in (2.1).

The variables 𝑢𝐸 (𝑥, 𝑡) and 𝑢𝐼 (𝑥, 𝑡) describe the spatial and temporal evolution of mean level of activity of

interacting excitatory and inhibitory populations. The temporal scale of the dynamics of each population

is determined by time constants 𝜏𝐸,𝐼 . Functions 𝑓𝐸,𝐼 are nonlinear activation functions, in [167] taken as

sigmoids bounded to values between 0 and 1

𝑓𝑖 (𝑥) = 1/[1 + 𝑒−𝛽𝑖 (𝑥−𝜃𝑖 )], 𝑖 = 𝐸, 𝐼, (2.2)

where the steepness 𝛽𝑖 and threshold 𝜃𝑖 depend on the population type 𝑖 = 𝐸, 𝐼 .
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2.2. WILSON-COWAN MODEL

Figure 3: Examples of connectivity functions 𝑤 (𝑥) given by (2.3) are shown. The interactions can be
classified into four types: purely excitatory (a); purely inhibitory (b); “lateral-inhibition” or “Mexican hat”
(c); “lateral excitation” or “inverted Mexican hat” (d).

The connectivity strength from population 𝑎 = 𝐸, 𝐼 to population 𝑏 = 𝐸, 𝐼 is given by 𝑤𝑎𝑏 (𝑥 − 𝑦). It

depends only on the distance between neurons 𝑥 and 𝑦 and not on their position, i.e. it is translationally

invariant. This function is typically either Gaussian or exponential. Its usual form is given by

𝑤 (𝑥) = 𝐴1𝑒
−(𝑥/𝜎1)2 −𝐴2𝑒

−(𝑥/𝜎2)2, (2.3)

where all parameters are non-negative.

The interactions given by (2.3) can be classified into four types [51]:

(a) excitatory, when 𝐴2 = 0;

(b) inhibitory, when 𝐴1 = 0;

(c) lateral-inhibitory, when 𝜎2 > 𝜎1 and 𝐴1 > 𝐴2;

(d) lateral-excitatory, when 𝜎1 > 𝜎2 and 𝐴2 > 𝐴1.

Examples of different connectivity types are given in Figure 3.

We note that the original Wilson-Cowan model includes refractoriness modeled by multiplying the firing

rates by

1 − 𝑟𝑖𝑢𝑖 (𝑥, 𝑡), 𝑖 = 𝐸, 𝐼, (2.4)

where 𝑟𝑖 is proportional to the refractory period of the population 𝑢𝑖 . We omitted it here for simplicity since

it usually does not appear in modern uses of the model. Moreover, it was observed that refractory terms

effectively rescale the parameters of the nonlinearities 𝑓𝐸,𝐼 [120].

To simplify their model and gain insights about its solutions, Wilson and Cowan employed a technique

known as time coarse graining that was first used to study some problems of statistical physics. In the
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CHAPTER 2. NEURAL FIELD MODELING

space-clamped model [166], it was applied by replacing the time integrals present in the equations by their

temporal averages, i.e., coarse-grained variables. This allowed Wilson and Cowan to perform the phase

plane analysis to determine the stability of fixed points of the neuronal dynamics. They observed multiple

stable fixed points, hysteresis loops and limit cycles in their model and concluded that upon choosing

physiologically reasonable values of the parameters, the temporally coarse-grained equations are valid

[166].

Time coarse graining was used also in the spatially extended model [167] and yielded a system (2.1).

Wilson and Cowan found numerically that depending on the values of model parameters, there exist three

categories of solutions: active transients, spatially localised limit cycles, and spatial patterns that reflect

some properties of prior stimuli. It was postulated that each type of solution corresponds to a distinct type

of neural tissue present in different areas of the brain [167]. Among these solutions, the spatial patterns,

or steady states, are the most important for this Thesis. Spatially inhomogeneous steady states are peaks

of elevated activity first generated by prior stimulus pattern and then sustained by recurrent interactions

until removed by a sufficiently strong inhibitory input [167]. They are believed to be the analogue of short-

term memory, i.e. memory holding task relevant information on the time scale of seconds, as shown in

studies with primates [62, 167]. Apart from modeling the memory function, the Wilson-Cowan model has

been applied to address a number of problems in computational neuroscience and has been extended in

many ways since its introduction in the 1970’s. For a recent review we refer the reader to [32, 40, 86].

2.3 Amari model

The next milestone for neural field theory was the seminal work of Amari [3]. He proposed a model in which

interacting excitatory and inhibitory neurons are mixed in a single population. The reduced dimensionality

of the resulting model allowed him for more rigorous analysis of the steady state solutions. In what follows

we show how the Amari model can be derived from the Wilson-Cowan equations.

Under some assumptions the excitatory and inhibitory populations of system (2.1) can be lumped together

into a single equation. In particular we assume that inhibition is faster than excitation (i.e., 𝜏𝐼 � 𝜏𝐸 ), 𝑓𝐼

is linear (i.e., 𝑓𝐼 (𝑢) = 𝑢), and that the recurrent inhibition 𝑤𝐼 𝐼 is neglected (i.e., 𝑤𝐼 𝐼 = 0) (see e.g. [51]

and Chapter 12 of [53]).

We begin by setting 𝜏𝐼 = 0, thus the activity 𝑢𝐼 (𝑥, 𝑡) is stationary at the time scale of the excitation 𝜏𝐸 .
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We solve (2.1b) for 𝑢𝐼 (𝑥, 𝑡)

𝑢𝐼 (𝑥, 𝑡) =
∫
ℝ

𝑤𝐼𝐸 (𝑥 − 𝑦)𝑢𝐸 (𝑦, 𝑡)d𝑦 + 𝐼𝐼 (𝑥, 𝑡). (2.5)

After substituting (2.5) into (2.1a) and dropping subscripts we obtain the single population model

𝜏
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= −𝑢 (𝑥, 𝑡) + 𝑓
(∫

ℝ

𝑤 (𝑥 − 𝑦)𝑢 (𝑦, 𝑡)d𝑦 + 𝐼 (𝑥, 𝑡)
)
, (2.6)

where𝑤 (𝑥 − 𝑦) = 𝑤 (𝑥,𝑦) represents a mixture of the excitatory and inhibitory interactions

𝑤 (𝑥 − 𝑦) = 𝑤𝐸𝐸 (𝑥) −
∫
ℝ

𝑤𝐸𝐼 (𝑥 − 𝑦)𝑤𝐼𝐸 (𝑦)d𝑦, (2.7)

and the input 𝐼 (𝑥, 𝑡) is given by

𝐼 (𝑥, 𝑡) = 𝐼𝐸 (𝑥, 𝑡) −
∫
ℝ

𝑤𝐸𝐼 (𝑥 − 𝑦)𝐼𝐼 (𝑦,𝑦)d𝑦. (2.8)

When the nonlinearity in 2.6 is placed inside the convolution term, we obtain the Amari equation from his

seminal paper [3]

𝜏
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= −𝑢 (𝑥, 𝑡) +
∫
ℝ

𝑤 (𝑥 − 𝑦) 𝑓 (𝑢 (𝑦, 𝑡))d𝑦 + 𝐼 (𝑥, 𝑡) + ℎ, (2.9)

where we have included a constant external input ℎ whose role we describe below.

We note that the formulations (2.6) and (2.9) are identical in the mathematical sense since they both

support the existence of the stationary activity patterns that we consider in this thesis. Equation (2.6) is

referred to as an activity-based model with 𝑢 (𝑥, 𝑡) representing the neural firing rate, whereas (2.9) is a

voltage-based model, with 𝑢 (𝑥, 𝑡) representing the membrane potential.

For his model, Amari assumed that the firing rate function is a Heaviside function, i.e., it is effectively a

sigmoid function (2.2) in the limit 𝛽 → ∞ that can be written as

𝑓 (𝑢) = 𝐻 (𝑢) =

0 if 𝑢 ≤ 𝜃,

1 otherwise,
(2.10)

where 𝜃 is the firing threshold. Amari set 𝜃 to zero and then added a spatially homogeneous (usually

negative) input ℎ to the field to adjust the bias. This is equivalent to setting input ℎ to zero and having the

threshold 𝜃 as a parameter [3, 51]. The choice of the Heaviside firing rate function greatly facilitates the

mathematical analysis of solutions of the model (but see Kishimito and Amari [89] for a generalization of

results to the case of a sigmoid nonlinearity). It allowed Amari to construct explicit solutions and apply

linear stability analysis to his model. We discuss Amari’s approach in more detail in Chapter 5.
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Amari also assumes that the connectivity function 𝑤 (𝑥) is of lateral inhibition type (see Fig. 3c). Con-

nectivity that takes both positive and negative values is crucial for a field comprising a single population

of both excitatory and inhibitory neurons. Although the single population model integrating both types of

neurons is less realistic in the biological sense, it has the advantage of mathematical tractability [51].

In the absence of inhomogeneous input 𝐼 (𝑥, 𝑡), Amari found in his model four different types of equilibrium

solutions:

(i) ∅-solution in which no region is excited, i.e. 𝑢 ≤ 0 for all 𝑥 ;

(ii) ∞-solution in which the whole region is excited, i.e. 𝑢 > 0 for all 𝑥 ;

(iii) 𝑎-solution, or localized excitation, in which the excited region is a finite interval of length 𝑎;

(iv) (𝑎,𝑏)-solution which is 𝑏−periodic with an excited region of length 𝑎.

In [3] Amari proves the existence and stability of the four types of solutions. He showed that the type of

solutions that the field dynamics supports depends on the connectivity strength described by𝑤 (𝑥,𝑦) and

the homogeneous input ℎ < 0. The first two types of solutions are trivial. Among the remaining types,

localized, stable activity patterns also known as “activity bumps” have attracted most attention since they

are thought to represent a neural correlate of a memory function, as we already mentioned while discussing

Wilson-Cowan model. We discuss bumps and their application to the modeling of working memory in more

detail in the next section and devote Chapter 5 to their analysis. Other applications of Amari type neural

fields where bump solutions play a central role include the modeling of orientation tuning in the primary

visual cortex [23, 73], head-direction cells in rats [175], and robot navigation [20], to mention but a few

examples. Periodic solutions of (2.9) received by far less attention in the literature, however see [94].

2.4 Bumps and working memory

The concept of working memory (WM) refers to the short-term maintenance and manipulation of sensory

information on the timescale of seconds that is considered crucial for execution of many cognitive tasks

[11]. The neural processes underpinning working memory are typically studied in non-human primates

during delayed response tasks [62]. Those experiments suggest that a neural correlate of WM is persistent

neural activity that is sustained in the brain in the absence of inputs from the external world. This kind

of input-specific persistent activity has been observed in prefrontal cortex (PFC) and other cortical areas
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such as the posterior parietal cortex and the inferotemporal cortex [63, 130]. Two types of encoding

continuous-valued information in self-sustained activity can be distinguished [160]:

• Spatial working memory is based on a position code. It is studied for instance in delayed

oculomotor tasks, in which a saccadic eye movement of a subject is guided by the memorized

spatial position of a visual cue [62]. During such tasks, neurons tuned to the continuous parameter

stimulus position respond with persistent activity. The level of activity reflects the similarity between

their preferred “position” and the external input. When the neurons are ordered along a line by their

preferred position, the self-sustained neural population activity is visualized as a spatially localized

activity bump. The peak position of this bump thus encodes the specific value of the external cue

[3, 25].

• Parametricworkingmemory is based on a rate code. It has been studied for instance in delayed

somatosensory discimination tasks, in which the encoded analog quantity is stimulus frequency

[130]. The experiments revealed persistent neural activity which varies monotonically with stimulus

frequency. A specific frequency is thus encoded by the firing rate and not by the position of a bump

in parametric space as in spatial WM.

A possible mechanism for self-sustained neuronal activity is synaptic reverberation, i.e., circulation of

excitation and inhibition in a recurrently connected neural network [74]. The idea is that the network con-

nectivity is such that the activity triggered by external inputs evolves toward some privileged activity states

that are stable in time, referred to as attractor states [177]. A particularly insightful theoretical framework,

which has been frequently used in the past to explain experimental data, is the continuous bump attractor

network [3, 25, 33]. Typically, the recurrent interactions within the network are organized in a way that

neurons encoding similar values of the continuous variable excite each other, whereas cells encoding dis-

similar values inhibit each other. Due to the assumed spatial symmetry of the connectivity function, bumps

are neutrally stable [3]. They can be located at any position along a continuum of parameter values.

Direct experimental evidence supporting the bump attractor hypothesis comes from studies on the

monkey prefrontal cortex during WM tasks [168]. In the frequently used oculomotor paradigm an animal

is required to remember the spatial location of one or more briefly presented visual stimuli. Several

seconds after stimulus offset the monkey has to execute a saccade toward the remembered location. At

the beginning of maintenance period, neurons tuned to the spatial cue evolve a bump of elevated activity.

The observed diffusive drift in the bump position during the maintenance period correlates with spatial
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errors of the saccadic eye movements. Continuous attractor networks explain this loss of memory precision

over time by assuming that sources of additive noise cause bump drift [168].

Despite their success in many applications, the explanatory power of classical bump attractor networks

is still limited since the bump shape is exclusively determined by the recurrent interactions. A more

sophisticated circuit-based model should regulate the rate of persistent activity depending on the qualitative

and quantitative characteristic of the preceding inputs. It has been shown for instance that the level of

persistent activity during the delay period of a spatial WM task correlates with stimulus contrast [34].

The internal memory representation can also be modulated by additional spatially informative cues [96,

164]. Moreover, there is recent experimental evidence that input-specific persistent activity is not static

but may systematically change (e.g., ramp up) during the delay period [25]. Several cellular and network

mechanisms have been proposed that are able to stabilize graded levels of population activity, based on

intracellular or network-level computations, which in general proved to be a nontrivial problem [134].

A recent neural field model proposed by Carroll and colleagues suppports a continuum of bump ampli-

tudes [30]. It consists of separate excitatory and inhibitory populations that are intra- and interconnected

with distance-dependent connectivity functions. However, the field model is structurally unstable since

the network parameters and the nonlinear firing function (necessary of piecewise linear shape) must be

tuned precisely (see also [92]). In particular, the recurrent excitation must be inversely proportional to the

slope of the nonlinearity to show a monotonic dependency of the bump amplitude on input strength. Since

any deviation from the fine tuning destroys the continuity of the attractor, the biological plausibility of the

working memory model is limited. The novel dynamic field model presented and analyzed in this thesis

supports a two-dimensional bump attractor, determined by a continuum of bump positions and bump am-

plitudes. Importantly, the attractor state is robust to changes in the nonlinearity and (mild) perturbations

of the network structure.

2.5 General remarks on neural field models

We first make some comments on the domain of integration, or spatial extend, (called Ω henceforth) of

the neural field equations. So far we considered models defined on the real line, i.e. on a one-dimensional

infinite domain. Modeling the activity of a finite number of neurons using an integro-differential equation

defined on an infinite domain at first may not seem biologically plausible. However, given that there are

approximately 86 billion neurons in the human brain, the continuum limit of the dense neural network
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seems to be justified. Usually the spatial extend of a neural field is taken as ℝ𝑑 or a subset of ℝ𝑑 ,

𝑑 = 1, 2, 3. The majority of examples in the literature concerns one-dimensional models (𝑑 = 1). Taken

as a model of pattern formation in cortical tissue, one-dimensional neural fields are relatively easy to

study and provide insights that can be extended to higher-dimensional and more realistic models. Two-

dimensional neural fields (𝑑 = 2) can be regarded as models of a piece of cortical tissue where its thickness

is neglected. They are more biologically plausible compared to the one-dimensional case and provide richer

dynamics, but at the expense of higher computational cost (see e.g. [24, 149]). Neuronal tissue with its

thickness taken into account can be modeled using a three-dimensional field model (𝑑 = 3). Due to the

high computational complexity of the three-dimensional convolution describing the spatial interactions, this

case did not receive much attention so far.

The next natural consideration is the choice of boundary conditions, which is in particular important for

numerical integration of neural field equations. Neural fields are primarily studied on either infinite or

periodic domains. When approximating the infinite domain the boundaries of the domain are left “open”.

For studying spatially localized patterns, the domain should be large enough so that the spatial extend of

the connectivity function is much smaller than the domain size. This ensures that the localized activity in

the model is sufficiently far from the edges of the domain to prevent boundary effects that may affect the

pattern formation process [51]. Another common approach is to use periodic boundary conditions (see

e.g., [73, 175]).

We now discuss an important difference between the two neural field formulations given by (2.6) and

(2.9), following the explanation in [51]. The model defined by (2.6) is usually referred to as an activity

based model, whereas (2.9) is referred to as a voltage based model. The difference between the two

forms lies in the biological interpretation of the variable 𝑢 (𝑥, 𝑡) and the time constant 𝜏 . For the activity

based model, it is assumed that the shape of the postsynaptic potential depends only on the nature of the

presynaptic population that caused it. In this case, the variable 𝑢 (𝑥, 𝑡) represents the firing rate and 𝜏

is called the membrane time constant of the model. The assumption for the voltage based model is that

the postsynaptic potential has the same shape regardless of the presynaptic population that caused it and

depends only on the postsynaptic cell. Here, 𝑢 (𝑥, 𝑡) is referred to as the synaptic drive and 𝜏 is called the

synaptic time constant. The choice of the formulation depends thus on the biological considerations for

the model (see e.g., [120]). The two formulations are closely related and conversion between them can

be made upon appropriate change of variables [51].

Finally, for completeness, we note that equations similar to (2.6) and (2.9) have been studied from a purely
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mathematical perspective. They are of the Hammerstein type [72] and have been investigated recently in

e.g., [5].
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3The dynamic neural field approach to

robotics

3.1 The Dynamic Field Theory (DFT)

The Dynamic Field Theory (DFT) is a biologically-inspired modeling language that has been used to model

neural processes that account for a vast number of behaviors and cognitive abilities [137]. This broad

range of topics includes but is not limited to target selection of the saccadic system [91], the planning of

reaching movements [12, 50], the perception of motion [81] and the synthesis of cognitive behaviors such

as memory, learning or decision making in autonomous robots [21, 139].

As basic building blocks, DFT uses dynamic neural fields (DNFs) introduced in Chapter 2 [3, 166,

167]. The particular mathematical form typically employed is Amari’s formulation given by (2.9) since

it allows analytical treatment [3]. Different to the classical models that were applied to explain neural

pattern formation on the cortical surface or in cortical areas, the fields in DFT applications are defined

over continuous metric dimensions relative to which information is being represented such as space,

orientation, color or other stimulus features. Activation bumps are the elementary units of representation

in the DFT framework. They encode the memory of a specific value along the metric dimension. From a

dynamical systems point of view bumps represent fixed point attractors.

DFT models typically consists of several coupled neural fields. They describe how external inputs (e.g.,

form sensory systems) drive the activation in the distributed neural network in order to generate sensory-

motor behaviors. The activation patterns described by means of DFT in general do not correspond to the

total activation of a given neural population but rather represent a projection of the neural activity into a

lower-dimensional parametric space relevant to a given task [47, 137, 138].
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3.2 DFT and robotics

In the area of robotics, the DFT approach has been first used to design autonomous robot architectures

for navigation tasks. This allowed for endowing the so-called attractor dynamics approach with memory

and decision making functionalities [21, 139]. Using DFT-based control architectures proved successful in

addressing two serious shortcomings in robotics research [46]. First, the absence of knowledge represen-

tations in robotic systems was hindering the progress toward endowing the robots with cognitive abilities.

Second, there was a need for general architectures for system integration that can be analyzed theoretically

[46].

The DFT framework has been also employed for developing control architectures for human-robot in-

teraction tasks. It provided means for endowing robots with high-level cognitive functions such as action

understanding, decision making and memory [48, 49]. The DFT-based architectures are organized as

large scale networks of interconnected neural fields that encode task-specific knowledge in their activa-

tion patterns. We show in Fig. 4 an example of such multi-layered architecture for decision making in

human-robot joint action [16]. Each individual field is modeled using variants of Amari’s equation. In this

formulation, the stability of attractor solutions depends on the model parametrization and the current in-

puts [3]. In general, the stability of each part of a complex dynamical system does not ensure the stability

of the system as a whole. However, if the coupling strength is weak, meaning that the external inputs

to a field site are weak compared to the inputs mediated by the recurrent interactions within the field,

the existence and stability of the desired attractor states can be guaranteed. The design of large scale

architectures of coupled fields is thus possible [138].

3.3 Building complex architectures with DNFs

3.3.1 Attractor states in DNFs

The state of the field dynamics is determined by two factors, the strenght of neural connections and

external inputs. In the absence of inputs, the field converges to the resting state, assumed by convention

as a negative value, i.e., 𝑢 (𝑥) = −ℎ. When localized input 𝐼 (𝑥) is applied to the field, there are two

possible scenarios, depending on the input strength. In the case of weak input, that is not strong enough

to bring the field activity above the firing threshold, the field operates in the input driven regime. The integral

term in the field equation (2.9) vanishes, i.e., 𝑢 (𝑥) = 𝐼 (𝑥) −ℎ, and the field dynamics simply reproduces
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Figure 4: Multi-layered DFT architecture for human-robot joint action [16]. Each layer contains one or
more neural populations encoding task specific information which are coupled to neural populations in
other layers.

the input pattern. When the input is strong enough to bring the field activity locally above the threshold,

the field generates a localized activation pattern. The lateral interactions begin to take effect, with short-

range excitation amplifying the field response at stimulated sites, and long-range inhibition suppressing

field locations outside the area with suprathreshold activity. This activity pattern is however only transient

in nature. When the input is removed, the field relaxes back to the resting state.

In a self-sustaining state, these patterns may persist in the field even in the absence of input. Under

appropriate conditions on the connectivity function and the parameter ℎ, the field dynamics is bistable,

with a stable resting state coexisting with a stable, self-sustaining bump of activity. We illustrate this in

Figure 5. The ability to switch between the two attractor states is crucial for building DNF models. The

resting state is destabilized by a sufficiently strong input giving rise to a bump of activity that persists when

the input is removed, which can be regarded as implementing a memory function. The stable bump may

in turn be removed by a sufficiently strong negative input, that brings the field back to the stable resting

state. This implements a forgetting mechanism in applications of the DFT approach.

So far we considered the case of a single localized external input. When multiple inputs are present,

the response of the field depends on the choice of the connectivity function𝑤 (𝑥). Typical choices include
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Figure 5: Switching between different attractor states in a neural field model. Weak transient input (a)
doesn’t bring the field activity above the threshold (dotted line), and when the input is removed, the field
relaxes back to the resting state (b). Stronger input (c) brings the activity above the threshold and a
self-sustained bump solution evolves (d).

a strong lateral inhibition component. The inhibition leads to suppression of activation at field sites that

receive weaker input and as a consequence only one localized activity pattern persists in the field. We

illustrate this in Figure 6. In DNF models, this competition is a basis of a decision process, since only

the strongest of multiple inputs will trigger the evolution of a bump. Coupling functions of oscillatory

type changes sign infinitely often, therefore regions of excitation exist also at larger distances and as a

consequence more than one bump may persist in the field [98]. In this case, the field dynamics may

develop several bumps in response to multiple inputs, providing a multi-item memory function.

Figure 6: Decision process in a neural field model. When two inputs are presented in parallel (a), a bump
solution evolves only at the location receiving the stronger input (b).
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3.3.2 Coupling between DNFs

Complex DNF architectures capable of explaining and generating sensory-motor behaviors consist of mul-

tiple coupled fields. This coupling is implemented by using the activity of one field as an input to another

field. Depending on the function of a specific coupling, there might be additional computations performed

on this activity. It can be for instance first convolved with an additional kernel describing a specific interac-

tion between the fields, or multiplied with the output of the step function acting on this activation to ensure

that only suprathreshold activity is used as input. In Amari’s field equation (2.9), the input term 𝐼 (𝑥, 𝑡),

represents the summed input at site 𝑥 from external sources (e..g, sensors) and/or connected fields.

We now use a toy DNF model consisting of three coupled one-dimensional fields (Figure 7) to explain

the idea of inter-field coupling that should facilitate the understanding of more complex DNF architectures

that we introduce in later chapters. Imagine that the field on top, 𝑢1, contains a stable activation pattern

that was initially created with some input from sensors or another connected field.

Figure 7: Toy DNF model. (a) Sketch of the model architecture containing three coupled neural fields,
𝑢1,2,3. Dashed lines indicate inhibitory connections, solid lines excitatory connections. (b) Bump attractor,
(c,d) activity patterns (black line) together with the localized input (red line). The dotted line in (b) indicates
the threshold 𝜃 = 0.
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The two fields on bottom, 𝑢2 and 𝑢3, receive the activity of 𝑢1 field as an input. Excitatory (inhibitory)

connections are given by positive (negative) input. Figure 7c-d shows the activation pattern (black line) in

the presence of the external input (red line). In this example only suprathreshold activity of 𝑢1 should have

an effect on the remaining fields, therefore we multiply 𝑢1 with a nonlinear transfer function such as for

instance the Heaviside step function with threshold 𝜃 = 0. The excitatory or inhibitory inputs to the fields

𝑢2 and 𝑢3, respectively, are then given by 𝐼2(𝑥) = 𝜖2𝑢1(𝑥) 𝑓 (𝑢1(𝑥)) and 𝐼3(𝑥) = −𝜖3𝑢1(𝑥) 𝑓 (𝑢1(𝑥)),

where 𝜖2, 𝜖3 > 0 are scaling factors which guarantee that the field dynamics is not dominated by the

external input. Note that the activity pattern in Fig. 7c would converge to the bump attractor when the

additive input is switched off whereas the activity in Fig. 7d would converge to the stable resting state.

Functionally, the suppression below resting state in the presence of the inhibitory input can be used for

instance to guarantee that excitatory input from another field is not able to drive the evolution of a bump

at this site.

3.4 Example of a complex architecture: DNF model of

sequence learning

3.4.1 Sequence learning

The ability to encode, store and recall sequences of events is an essential component of intelligent be-

haviour. Almost all of our daily routine tasks are embedded in a sequential context. Fluent execution

of sequential activities very often requires the information about both the ordinal and temporal sequence

structure. Experimental evidence from physiological and behavioral studies suggests that the neural mech-

anisms underlying both ordinal and temporal structure of sequences are closely related, however, this is

still a matter of considerable debate in the experimental literature (see e.g., [43, 152]).

One of the main theories for serial order is the ordinal theory [75]. According to this theory, sequence

elements can be stored along a common dimension, and serial order is defined by the relative values

of that dimension. In [70], the serial order is assumed to be stored in an activation gradient, where the

representation of each item in the sequence is stronger than the subsequent one. The sequence retrieval

is an iterative process of selecting the strongest element, which is then reset by feedback inhibition so that

the next strongest element can be selected. This process continues until all elements of the sequence

are retrieved. Due to the competitive read-out mechanism this theory is also referred to as competitive

22



3.4. EXAMPLE OF A COMPLEX ARCHITECTURE: DNF MODEL OF SEQUENCE LEARNING

queuing (CQ) [78]. For reviews of different serial order theories we refer the reader to e.g. [75, 79].

The DNF-based approach to learning joint order-timing representations of sequences belongs to the CQ

model class. The main idea is that the serial order is encoded by means of multi-bump solutions forming

an activation gradient, with the highest bump representing the first event, and the lowest bump the last

one [56]. This is inspired by neurophysiological evidence showing that neuronal populations encoding

different sequence elements appear to be activated in parallel at the beginning of sequence execution with

a neural activation level representing the ordinal position [7]. The activation gradient in the neural field

is achieved by combining the field dynamics with a state-dependent threshold accommodation dynamics

for the firing rate function [36]. As a consequence, the strength of the population representation of each

event is a function of elapsed time since sequence onset.

3.4.2 DNF model of learning joint order and timing representations

The DNF model introduced in [56] and extended in [57] consists of two parts: sequence learning and

sequence recall (see Figure 8). This division corresponds to the two phases of the behavioral paradigm

used for studying sequence learning [127]. The dimensions over which the fields are spanned are the

dimensions guiding sequence learning. In the experiment described in [57], a robot learned by observing

a teacher to first memorize and subsequently execute from memory a precisely timed musical sequence.

The sequence of notes was coded using colored squares displayed on a computer screen, hence, the fields

are spanned over the dimension color.

The goal of the sequence learning phase is to establish the activation gradient containing all elements

of the observed sequence. The learned multi-bump pattern is stored in the sequence memory field 𝑢𝑚𝑒𝑚

and serves as a subthreshold input to the decision field 𝑢𝑑𝑒 . The sequence recall phase starts with

the increase of the baseline activity in 𝑢𝑑𝑒 that brings the subthreshold activation pattern closer to the

threshold. When the element with the highest activation reaches this threshold, a bump evolves, which

corresponds to the recall of the specific element. In the robotics experiment, the time of crossing the

threshold starts the behavior, that is, the robot presses the corresponding color key on the keyboard (for

a video with an example of the experiments see http://marl.dei.uminho.pt/public/videos/

PianoTask.mp4). Mediated by excitatory connections, a bump evolves in the working memory field𝑢𝑤𝑚

which subsequently suppresses the bump in the decision field𝑢𝑑𝑒 due to inhibitory feedback connections.

This dynamic process continues until all the elements in the sequence are retrieved and stored in working

memory as being executed.
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Figure 8: Schematic view of the DNF architecture used in [57] consisting of several interconnected fields
implementing sequence learning and sequence recall.

The model of learning sequential task was later extended in [171] by specifically addressing the im-

portant role of sensory feedback about executed actions for the learning process. This extension allowed

us to address the important challenge of adaptive action timing in dynamic environments.

3.4.3 Adaptive timing

In the musical sequence example [57], the motor delays that may affect the timing of sequence execu-

tion were negligible (and constant) since the robot’s fingers were positioned directly above the keyboard.

However in more complex scenarios with varying movement times of component actions, motor delays

will destroy the learned timing pattern. This is particularly important for robots interacting with people in

dynamic environments. For instance, in the case of in an object transfer task between robot and human,
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the temporal precision of the robot action has a greater weight for the subjective experience rating than

the spatial precision as demonstrated in a recent user study of human-robot interaction [90].

Motivated by these findings, we proposed an extension to the DNF model that addresses the challenge

of adaptive action timing [171]. The sequence learning process is analogous to the original version of the

model [57]. An important difference is that the learned sequence representation can be precisely adjusted

during the sequence recall phase of the experiment. Since the memory of a sequence is encoded in an

activation gradient that stores the relative timing of events, by adjusting the amplitudes of bumps in the

gradient we can fine tune this timing pattern.

The main change in the model is the addition of two fields, representing the internal simulation of

learned sequence execution and the perception of the sensory feedback about executed actions. The

sensory feedback is present only when the action is accomplished, meaning that in the first execution of a

memorized sequence, the learned timing is delayed by the movement execution time. The time courses of

the activities in the two added fields are compared during the sequence recall phase in order to detect the

temporal mismatch between them. Based on detected mismatch, the original gradient in the sequence

memory is adjusted, and this adapted gradient is used in subsequent execution trials. The fine tuning of

the original memory representation is achieved by a simple learning rule that we adapted from [1]. Based

on a difference between the expected timing and the actually executed timing of action, the learning rule

adapts the resting level of the field containing the copy of original memory representation, resulting in

changed timing of actions in the next sequence recall trial. When the action is delayed, the resting level

is increased in order to start the movement earlier in subsequent trial. If the action is executed too early,

the resting level is reduced to delay movement onset.

In Figure 9 we illustrate the effect of the local adaptation of the resting level ℎ on the time course of

the bump evolution in the decision field. The resting level was increased locally for the bump centered at

position 𝑥3, and decreased for the remaining two bumps centered at 𝑥1 and 𝑥2 (Fig. 9b). This means

that the first action, represented by the highest bump, is recalled earlier in a subsequent trial, whereas

the remaining two actions are recalled at later times. We illustrate this in Figure 9c-d, where the times

courses of activity at the field locations 𝑥1,2,3 are shown. Relatively small changes of the gradient result in

differences in the time when each bump reaches the decision threshold 𝜃 , marked as 𝑡1,2,3. Parameter ℎ

may be also adapted globally, to adjust the onset time of the whole sequence without affecting the relative

timing pattern encoded in the activation gradient [171].

The model of adaptive action timing was tested in different robotics experiments [173], [Wojtak et al.,
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Figure 9: Local ℎ-level adaptation of individual bumps in a memory field: (a) before adaptation, (b) after
adaptation. The adapted ℎ-level (red line) results in bumps with changed amplitudes. Panels (c) and (d)
show the time courses of field locations corresponding to the bump centers, 𝑥1,2,3, before and after ℎ-level
adaptation, respectively.

in preparation]. Different sequential task settings have been designed that are closely inspired by realistic

scenarios in service (e.g., assisting a disabled person during drinking) and industrial (e.g., joint assembly

of electronic equipment) applications [173], [Wojtak et al., in preparation]. All scenarios require a tight

synchronization of actions between human and robot to minimize waiting time, and thus, to guarantee

fluent task execution. The experiments included two distinct learning and adaptation phases. First, the

robot learns the order and timing of joint task execution by observing the performance of two human

“teachers”. Subsequently, the robot replaces one human in the team and tries to jointly execute the task

with the remaining “teacher”. To achieve fluency, the robot has to adapt in repeated interaction trials

its movement timing to the (predictable) time course of actions performed by the partner. The robot’s

adaptive timing capacity is further challenged by 1) the interaction with different users in the same task,

and 2) by systematic changes in the timing of specific subtasks executed by the human partner.

Figure 10 depicts an example of a human-robot cooperation in which the robot transfers different

objects in the correct order and at the expected time to a human operator [Wojtak et al., in preparation].
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The robot adapts the timing of its actions over several joint execution trials by taking into account the action

timing of the human partner. We show snapshots of the handovers (with time stamps indicating seconds)

during the first (top) and the third (bottom) joint execution trial. It can be clearly seen that the execution

fluency greatly improves due to the robot’s adaptive movement timing capacity.

Figure 10: Example of a human-robot cooperation scenario. Snapshots of the handovers (with time stamps
indicating seconds) during the first (a - c) and the third (d - f) joint execution trial.

3.5 Motivation for the new model

In the Amari model used for building DNF architectures, the bump solution has a unique shape exclusively

determined by the recurrent interactions within the network. This means that the input characteristics

(e.g., strength or duration) are not reflected in the bump profile. In order to create input dependent bump

solutions with different amplitudes and shapes (e.g. reflecting different input durations), additional mech-

anisms such as for instance a threshold accommodation dynamics used in sequence learning model are

necessary. Another important issue for applications concerns the creation of a stable multi-bump solution

in response to a series of sensory inputs. Even if such solution exists when the stimuli are presented

simultaneously, when they are presented sequentially, the additional inhibition created by existing bumps

in the field might be too strong for subsequent stimuli to overcome. In the Amari model, this challenge has

been addressed by using a special type of connectivity function, the oscillatory kernel proposed in [98],

which supports the existence of input-driven multi-bump solutions [55]. However, being able to create

stable multi-bumps with different classes of connectivity function would benefit many applications.

27



CHAPTER 3. THE DYNAMIC NEURAL FIELD APPROACH TO ROBOTICS

In the following, we present a new neural field model that responds to these shortcomings of the

classical models. It provides a two-dimensional bump attractor, determined by a continuum of bump

positions and bump amplitudes. The model may be applied as a robust neural integrator representing

input strength and duration in the bump amplitude without a need to rely on any additional processing

mechanisms such as for instance a threshold accommodation dynamics [58]. Moreover, due to a reduced

activity suppression by neighboring bumps, the creation of stable multi-bump solutions is possible even

with a connectivity function of lateral inhibition type used by Amari [3] in his seminal work.
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4.1 Derivation of the neural field model

We extend the model studied by Amari [3] by coupling a second neural field, 𝑣 , to the system. Our model

thus reads

𝜏𝑢
𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) + 𝑣 (x, 𝑡) +
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′ + 𝐼 (x, 𝑡), (4.1a)

𝜏𝑣
𝜕𝑣 (x, 𝑡)
𝜕𝑡

= −𝑣 (x, 𝑡) + 𝑢 (x, 𝑡) −
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′, (4.1b)

where the spatial domain Ω is ℝ𝑑 or a subset of ℝ𝑑 . We study the model for the cases 𝑑 = 1 and

𝑑 = 2, but higher dimensions could be in principle considered as well with the presented mathematical

techniques. In numerical simulations of the model we apply “open” boundary conditions unless otherwise

stated. This means that the value attained by the field at the boundary of the domain is determined by

the initial condition and inputs to the field. We ensure that the domain is large enough so that the activity

patterns are sufficiently far from the domain boundaries. We note however that we are not restricted to

this specific setting, and other choices of boundary conditions could be employed, e.g. periodic boundary

conditions or Dirichlet boundary conditions [67]. The variables 𝑢 (x, 𝑡) and 𝑣 (x, 𝑡) represent neural activ-

ities at position x ∈ Ω at a time 𝑡 ∈ ℝ+.

The parameters 𝜏𝑢 and 𝜏𝑣 define the timescales of field 𝑢 and 𝑣 , respectively, and 𝐼 (x, 𝑡) represents a

time-dependent, localized input centered at site x of the 𝑢 -field.

Term 𝑤 (x, x′) denotes the strength of connections between neurons, is assumed to depend on the Eu-

clidean distance, so that𝑤 (x, x′) = 𝑤 ( |x − x′|). Hence, the 1D and 2D neural fields are homogeneous

and isotropic (translationally/rotationally invariant). Following Amari [3], we know that the network can

support a stable stationary bump solution when𝑤 (x) satisfies the following conditions

(𝐻1) 𝑤 (x) is symmetric, i.e. 𝑤 (−x) = 𝑤 (x) for all x ∈ ℝ𝑑 ;
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(𝐻2) 𝑤 (x) is continuous on ℝ𝑑 and
∫
𝑤 (x′)dx′ is finite;

(𝐻3) 𝑤 (x) > 0 on an interval (−x, x), and𝑤 (−x) = 𝑤 (x) = 0;

(𝐻4) 𝑤 (x) is decreasing on (0, x];

(𝐻5) 𝑤 (x) < 0 on (−∞,−x) ∪ (x,∞).

The conditions are for the 1D case and can be generalized to 2D. Conditions (𝐻1), (𝐻2) and (𝐻4) are

general requirements for a tractable mathematical analysis, whereas conditions (𝐻3) and (𝐻5) result in

“lateral inhibition” type interactions [51]. In particular, condition (𝐻3) yields that nearby neurons excite

each other, while (𝐻5) ensures mutually inhibitory influence of neurons at distances greater than a certain

value x.

Common examples of𝑤 (x) satisfying conditions (𝐻1)− (𝐻5) are a coupling function with constant lateral

inhibition

𝑤𝑙𝑎𝑡 (x) = 𝐴𝑙𝑎𝑡𝑒 (−x
2/2𝜎2

𝑙𝑎𝑡) − 𝑔𝑙𝑎𝑡 , 𝐴𝑙𝑎𝑡 > 0, 𝜎𝑙𝑎𝑡 > 0, 𝑔𝑙𝑎𝑡 > 0, (4.2)

and the Mexican hat function given by the difference of two Gaussians

𝑤𝑚𝑒𝑥 (x) = 𝐴𝑒𝑥𝑒 (−x
2/2𝜎2𝑒𝑥) −𝐴𝑖𝑛𝑒 (−x

2/2𝜎2𝑖𝑛) − 𝑔𝑚𝑒𝑥 , (4.3)

where 𝐴𝑒𝑥 > 𝐴𝑖𝑛 > 0 and 𝜎𝑖𝑛 > 𝜎𝑒𝑥 > 0 and 𝑔𝑚𝑒𝑥 > 0.

To enable stable multi-bump solutions in the neural field equation (2.9), Laing et al. [98] extended the

work of Amari [3] by introducing the oscillatory connectivity function

𝑤𝑜𝑠𝑐 (x) = 𝑒−𝑏 |x| (𝑏 sin |x| + cos(x)), 𝑏 > 0, (4.4)

where the parameter 𝑏 controls the rate at which the oscillations decay with distance.

In a study addressing the conditions on multiple localized inputs 𝐼 (x, 𝑡) that guarantee the evolution of

a multi-bump pattern [55], the periodically modulated function (4.4) has been adapted in in the following

way

𝑤𝑜𝑠𝑐 (x) = 𝑒−𝑏 |x| (𝑏 sin |𝛼x| + cos(𝛼x)), 𝑏 > 0, (4.5)

where the parameter 0 < 𝛼 ≤ 1 is added to control the distances of the zero crossings of 𝑤 (x).

The couplings (4.4) and (4.5) satisfy (𝐻1) and (𝐻2), and also the following properties

(𝐻6) 𝑤 (x) is an oscillatory function that tends to zero as 𝑥 → ±∞;
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Figure 11: (a) Connectivity functions 𝑤 (𝑥) given by (4.2) with 𝐴𝑙𝑎𝑡 = 1, 𝜎𝑙𝑎𝑡 = 1.5 (blue curve), (4.3)
with 𝐴𝑒𝑥 = 2, 𝜎𝑒𝑥 = 1, 𝐴𝑖𝑛ℎ = 1, 𝜎𝑖𝑛ℎ = 2 and 𝑔𝑚𝑒𝑥 = 0 (green curve) and (4.4) with 𝐴 = 1, 𝑏 = 0.3
(red curve). (b) Activation functions given by (4.6) (blue curve), (4.7) with 𝛽 = 0.5 (green curve) and (4.8)
with 𝛽 = 0.5 (red curve). Threshold 𝜃 = 0.

(𝐻7) 𝑤 (0) > 0 and𝑤 (x) changes sign infinitely often on (0,∞).

We show examples of coupling functions given by (4.2) - (4.4) in Figure 11a.

The term 𝑓 (𝑢) denotes the firing rate function with threshold 𝜃 ≥ 0. To simplify the analytical work, Amari

assumed 𝑓 (𝑢) as a Heaviside step function, that is

𝑓 (𝑢) = 𝐻 (𝑢) =

0, 𝑢 ≤ 𝜃,

1, 𝑢 > 𝜃 .
(4.6)

Other possible choices are the sigmoid function with slope parameter 𝛽

𝑓 (𝑢) = 1

1 + 𝑒 (−𝛽 (𝑢−𝜃 ))
, (4.7)

and the piecewise linear function

𝑓 (𝑢) =


0, 𝑢 ≤ 𝜃,

𝛽 (𝑢 − 𝜃 ), 𝜃 < 𝑢 ≤ 𝜃 + 1/𝛽,

1, 𝑢 > 𝜃 + 1/𝛽.

(4.8)

Examples of functions (4.6) - (4.8) are depicted in Figure 11b.

Amari derives his scalar neural field model of coupled excitatory and inhibitory subpopulations by

assuming that the long ranged inhibitory feedback in the network is infinitely fast. This ensures that the

spread of self-sustained excitation remains localized in a region activated by external input. To understand

the role of the 𝑣 -field of the two-field model in the pattern formation process, it is helpful to consider
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also different time scales for the two fields (see Figure 12). In the limit case 𝜏𝑣 → 0, the 𝑣 -field is at

quasi-equilibrium with

𝑣 (x, 𝑡) = 𝑢 (x, 𝑡) −
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′. (4.9)

Substituting this expression into the 𝑢 -equation of (4.1) yields

𝜕𝑢 (x, 𝑡)
𝜕𝑡

= 𝐼 (x, 𝑡). (4.10)

Figure 12: (a) Solution at time 𝑡 = 50 of the model (4.1) with 𝜏𝑣 = 0.005. (b) Time evolution of center
positions of field 𝑢 and 𝑣 from panel a. Input (grey line) with 𝐴𝐼 = 2, 𝜎𝐼 = 1 and 𝑑 = 1 was applied at
time 𝑡 = 1. Kernel𝑤 given by (4.3) with𝐴𝑒𝑥 = 2.5, 𝜎𝑒𝑥 = 1.5, 𝐴𝑖𝑛ℎ = 1.25, 𝜎𝑖𝑛ℎ = 3.5 and𝑤𝑖𝑛ℎ = 0.1.
𝐾 = 0, 𝜃 = 0.6.

The 𝑢 -field thus implements a perfect temporal integration of external inputs if fast local feedback loops

counterbalance any input-induced changes in the recurrent interactions. Interestingly, a distinct subclass

of inhibitory interneurons has been described in WM tasks that show sustained activity with “inverted

spatial tuning” relative to nearby excitatory neurons [176]. Such opposed tuning is consistent with a

spatial integration of excitation with the inverted connectivity profile of the 𝑢 -field. Its functional role is

not clear however. Based on a cortical microcircuit model, it has been suggested that these interneurons

might serve to stabilize working memory by virtue of disinhibiting excitatory neurons that have already

been activated by a stimulus held in memory [159]. In the two-field model, balanced inhibitory feedback

ensures that persistent activity at any time represents the time integral of past inputs to a specific field

location. In addition, the spatial integration with an inverted Mexican hat connectivity propagates excitation

outwards from stimulated regions, thus reducing the effect of lateral inhibition in the 𝑢 -field [124].

4.2 Spatially homogeneous field model

To understand the pattern formation process of the two-field model and its dependence on initial conditions

and external input it is instructive to first discuss a one-dimensional, spatially homogeneous version of
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system (4.1) in which all field sites integrate with the same weight the activity from neighboring neurons.

The dynamics of the resulting space-clamped system can be analyzed using phase plane techniques. It is

given by
d𝑞𝑢
d𝑡

= −𝑞𝑢 + 𝑞𝑣 +𝑊 × 𝑓 (𝑞𝑢 − 𝜃 ) + 𝐼 , (4.11a)

d𝑞𝑣
d𝑡

= −𝑞𝑣 + 𝑞𝑢 −𝑊 × 𝑓 (𝑞𝑢 − 𝜃 ). (4.11b)

The constant𝑊 > 0 is chosen without loss of generality to represent the integral of the kernel𝑤

𝑊 =
∫ ∞

−∞
𝑤 (𝑦)d𝑦. (4.12)

Figure 13: Phase portrait and nullclines of the system (4.11) with 𝜃 = 0.4 and 𝐼 = 0. Blue line represents
the 𝑞𝑢 -nullcline and the red line the 𝑞𝑣 -nullcline. Parameters of the kernel used to calculate𝑊 in (4.12)
are 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and𝑤𝑖𝑛ℎ = 0.

Fig. 13 depicts the phase portrait of system (4.11) in the absence of input. Equilibrium points lie on a

line with positive slope and a discontinuity at threshold 𝜃 . For a suprathreshold initial value 𝑞𝑢 (0) > 𝜃 and

𝑞𝑣 (0) = 0, the system converges to an equilibrium point with 𝑞𝑢 > 𝑞𝑢 (0) which increases monotonically

with increasing 𝑞𝑢 (0). Solution curves are also represented by straight lines indicating that the sum of 𝑞𝑢

and 𝑞𝑣 remains constant over time, 𝑞𝑢+𝑞𝑣 = 𝐾 . For the specific choice𝐾 = 1, Fig. 14 shows the solution

curve together with the 𝑞𝑢 -nullcline and the 𝑞𝑣 -nullcline definded by d𝑞𝑢/d𝑡 = 0 and d𝑞𝑣/d𝑡 = 0, respec-

tively. The intersections of the two nullclines represent equilibrium points of the dynamical system, their

location and number depends on the values for 𝐾 and 𝜃 . For the case 𝐾 ≥ 2𝜃 , there is a single equilib-

rium point which is stable. For 𝐾 < 2𝜃 , there are three three equilibrium points. One of them, (𝑞∗𝑢2, 𝑞∗𝑣2),
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is unstable, whereas the remaining two points (𝑞∗𝑢1, 𝑞∗𝑣1) and (𝑞∗𝑢3, 𝑞∗𝑣3) are stable. The equilibrium point

to which the system converges is determined by the initial values (𝑞𝑢 (0), 𝑞𝑣 (0)) = (𝑞𝑢 (0), 1 − 𝑞𝑢 (0))

as summerized in Table 1.

Figure 14: Phase portrait and nullclines of the system (4.11) with the initial condition 𝑞𝑢 (0) + 𝑞𝑣 (0) =
𝐾 . (a) 𝐾 = 1, 𝜃 = 0.8. There are three equilibrium points at (𝑞∗𝑢1, 𝑞∗𝑣1) = (0.5, 0.5), (𝑞∗𝑢2, 𝑞∗𝑣2) =
(0.8, 0.2), (𝑞∗𝑢3, 𝑞∗𝑣3) = (1.28,−0.28). (b) 𝐾 = 1, 𝜃 = 0.4. There is one equilibrium point at (𝑞∗𝑢, 𝑞∗𝑣 ) =
(1.28,−0.28).

For the two-field model, the discussion of the qualitative behavior of the reduced model suggests the

existence of a bump solution with a unique shape satisfying 𝑢 (𝑥) + 𝑣 (𝑥) = 𝐾 as long as the initial

conditions satisfy 𝑢 (𝑥, 0) + 𝑣 (𝑥, 0) = 𝐾 and 𝑢 (𝑥, 0) > 𝜃 holds. In this case, the two-field model is

expected to behave as the classical Amari model. For the case that𝐾 is not a constant,𝑢 (𝑥, 0)+𝑣 (𝑥, 0) =

𝐾 (𝑥), bumps with a monotonic dependence on initial conditions can be expected. As a particularly

relevant example for applications, we study in Chapter 7 numerically the case 𝑣 (𝑥, 0) = 0 ∀𝑥 and

𝑢 (𝑥, 0) with Gaussian shape which reflects an initial condition set by localized input.

Initial value 𝑞𝑢 (0) 𝐾 < 2𝜃 𝐾 ≥ 2𝜃

𝑞𝑢 ≤ 𝐾

2

(
𝐾

2
,
𝐾

2

)
(
𝐾 +𝑊

2
,
𝐾 −𝑊

2

)
𝐾

2
< 𝑞𝑢 ≤ 𝜃 (𝜃, 𝐾 − 𝜃 )

𝑞𝑢 > 𝜃

(
𝐾 +𝑊

2
,
𝐾 −𝑊

2

)
Table 1: Fixed points of the system (4.11) with the condition 𝑞𝑢 (0) + 𝑞𝑣 (0) = 𝐾 .
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We start our investigation by analyzing the existence and stability of bump solutions for the Amari

model (Chapter 5) and the two-field model (Chapter 6) for one and two spatial dimensions.
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5Stability analysis of the Amari model

5.1 Introduction

In this Chapter we analyze the existence and stability of stationary single bump solutions in the Amari

model without external inputs [3] using three different methods. First, we review the results from Amari’s

seminal paper [3] using his linear stability analysis approach. We then study bump solutions using a

Lyapunov functional [95, 118]. Finally we employ Pinto’s and Ermentrout’s stability analysis [121]. The

focus is on bump solutions in one spatial dimension. However, using Pinto’s and Ermentrout’s method we

extend the analysis also to the two dimensional case. Here a specific coupling function of lateral inhibition

type (“wizard hat”) is used to ease the mathematical analysis.

Following Amari’s analysis of the one-dimensional field equation

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= −𝑢 (𝑥, 𝑡) +
∫
ℝ

𝑤 (𝑥 − 𝑦) 𝑓 (𝑢 (𝑦, 𝑡) − 𝜃 )d𝑦, (5.1)

we assume 𝑓 to be the Heaviside function with threshold 𝜃 given by (4.6). The connectivity functions we

consider are a Gaussian kernel with constant lateral inhibition given by (4.2) and a Mexican hat function

given by (4.3).

5.2 Amari’s linear stability analysis

Using the Heaviside function, Amari has shown that the behavior of a bump solution can be described by

tracking the boundaries between states of high and low activity. It is thus possible to reduce the analysis

of pattern formation in the model formalized by an integro-differential equation to the simpler problem of

analyzing the dynamics of boundary points governed by ODEs.

Let 𝑅 [𝑢 (𝑥, 𝑡)] be the region over which the field is excited

𝑅 [𝑢 (𝑥, 𝑡) > 𝜃 ] = (𝑥1(𝑡), 𝑥2(𝑡)), (5.2)
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and let the gradients of 𝑢 (𝑥, 𝑡) at the boundaries 𝑥1 and 𝑥2 of the excited region be

𝑐1 =
𝜕𝑢 (𝑥1, 𝑡)
𝜕𝑥

, −𝑐2 =
𝜕𝑢 (𝑥2, 𝑡)
𝜕𝑥

. (5.3)

After a short period of time d𝑡 , the excited region changes to

𝑅 [𝑢 (𝑥, 𝑡 + d𝑡) > 𝜃 ] = (𝑥1(𝑡 + d𝑡), 𝑥2(𝑡 + d𝑡)) . (5.4)

The boundaries of the excited region satisfy

at time 𝑡 : 𝑢 (𝑥𝑖, 𝑡) = 𝜃, (5.5a)

at time 𝑡 + d𝑡 : 𝑢 (𝑥𝑖 + d𝑥𝑖, 𝑡 + d𝑡) = 𝜃, (5.5b)

where 𝑥𝑖 (𝑡 + d𝑡) = 𝑥𝑖 + d𝑥𝑖, 𝑖 = 1, 2.

A first order Taylor expansion of the latter equation yields

𝜕𝑢 (𝑥𝑖, 𝑡)
𝜕𝑥

d𝑥𝑖 +
𝜕𝑢 (𝑥𝑖, 𝑡)
𝜕𝑡

d𝑡 = 0, 𝑖 = 1, 2, (5.6)

for infinitesimally small d𝑥𝑖 and d𝑡 .

We can then rewrite (5.1) at 𝑥 = 𝑥𝑖 (𝑡) as

𝜕𝑢 (𝑥𝑖, 𝑡)
𝜕𝑡

= −𝑢 (𝑥𝑖, 𝑡) +
∫ 𝑥2 (𝑡)

𝑥1 (𝑡)
𝑤 (𝑥,𝑦)d𝑦. (5.7)

Since 𝑢 (𝑥𝑖, 𝑡) = 𝜃 , we have from (6.2a)

𝜕𝑢 (𝑥𝑖, 𝑡)
𝜕𝑡

= −𝜃 +𝑊 (𝑥2 − 𝑥1), (5.8)

where

𝑊 (𝑥) =
∫ 𝑥

0
𝑤 (𝑦)d𝑦. (5.9)

We have
d𝑥1
d𝑡

=
−𝜕𝑢/𝜕𝑡
𝜕𝑢/𝜕𝑥

����
𝑥=𝑥1

= − 1
𝑐1

(−𝜃 +𝑊 (𝑥2 − 𝑥1)) , (5.10a)

d𝑥2
d𝑡

=
𝜕𝑢/𝜕𝑡
𝜕𝑢/𝜕𝑥

����
𝑥=𝑥2

=
1
𝑐2

(−𝜃 +𝑊 (𝑥2 − 𝑥1)) . (5.10b)

We can then describe the change of length of the excited region Δ(𝑡) = 𝑥2(𝑡) − 𝑥1(𝑡)

dΔ
d𝑡

=

(
1
𝑐1

+ 1
𝑐2

)
(−𝜃 +𝑊 (Δ)) . (5.11)
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The existence of a solution of width Δ = 𝑥2 − 𝑥1 is determined by the roots of

𝑊 (Δ) = 𝜃 . (5.12)

The stability condition is that a steady state of width Δ is stable if

𝑊 ′(Δ) < 0, (5.13)

and unstable otherwise.

We plot examples of the existence condition (5.12) for the lateral inhibition kernel (4.2) and the Mexican

hat kernel (4.3) in Figure 16.

The number of bump solutions that the field can support in the absence of input depends on the

connectivity function𝑤 (𝑥) and the value of 𝜃 . Amari defines

𝑊𝑚𝑎𝑥 = max
𝑥>0

𝑊 (𝑥), 𝑊∞ = lim
𝑥→∞

𝑊 (𝑥) (5.14)

and gives the sets of equilibrium solutions for three cases

Case 𝐼1: 𝑊∞ > 0; 2𝑊∞ >𝑊𝑚𝑎𝑥 ,

Case 𝐼2: 𝑊∞ > 0; 2𝑊∞ <𝑊𝑚𝑎𝑥 ,

Case 𝐼 𝐼 : 𝑊∞ < 0.

We show in Fig. 15 the set of possible equilibrium solutions for the case𝑊∞ < 0 as a function of 𝜃 .

Figure 15: Diagram showing the sets of equilibrium solutions in the Amari model for the case of𝑊∞ < 0
for various values of 𝜃 in the absence of input [3] where ∅ denotes a solution in which no region is excited
and ∞ is a solution in which the whole region is excited. Solutions Δ1 < Δ2 are bumps with widths Δ1

and Δ2, respectively. Solution Δ1 is unstable, the remaining solutions are stable.
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Figure 16: Bump existence in the Amari model for a lateral inhibition kernel (4.2) with𝐴𝑙𝑎𝑡 = 1, 𝜎𝑙𝑎𝑡 = 1.5,
𝑤𝑖𝑛ℎ = 0.2 (a) and Mexican hat kernel (4.3) with 𝐴𝑒𝑥 = 3, 𝜎𝑒𝑥 = 1.5, 𝐴𝑖𝑛ℎ = 1.5, 𝜎𝑖𝑛ℎ = 3 and
𝑤𝑖𝑛ℎ = 0.2 (b). In both panels the threshold is 𝜃 = 0.5 (dotted line). In panel (a) there exist two solutions
with Δ1 = 0.64 (unstable) and Δ2 = 6.9 (stable). In panel (b) we have two solutions with Δ1 = 0.39
(unstable) and Δ2 = 3.58 (stable).

5.3 Lyapunov method

The stability of stationary solutions of the neural field equations can be also determined using the Lya-

punov method [61], as it was done previously in e.g. [39, 95, 118]. Stable and unstable bump solutions

correspond to local minima and local maxima of a Lyapunov functional, respectively. We summarize the

results for the Amari model below.

The Lyapunov functional for the Amari model (5.1) is given by

𝐸 [𝑢] = −1
2

∫
Ω

∫
Ω
𝑤 (𝑥 − 𝑦) 𝑓 (𝑢 (𝑥, 𝑡) − 𝜃 ) 𝑓 (𝑢 (𝑦, 𝑡) − 𝜃 )d𝑥d𝑦 +

∫
Ω

∫ 𝑢 (𝑥,𝑡)

0
𝑓 ′(𝑠)𝑠d𝑠 . (5.15)

For a Heaviside firing rate it becomes

𝐸 [𝑢] = −1
2

∫
Ω

∫
Ω
𝑤 (𝑥 − 𝑦) 𝑓 (𝑢 (𝑥, 𝑡) − 𝜃 ) 𝑓 (𝑢 (𝑦, 𝑡) − 𝜃 )d𝑥d𝑦 + 𝜃

∫
Ω
𝑓 (𝑢 (𝑥, 𝑡) − 𝜃 )d𝑥 . (5.16)

For a bump of width Δ = (𝑥2 − 𝑥1) we have

𝐸 (Δ) = −1
2

∫ 𝑥2

𝑥1

∫ 𝑥2

𝑥1

𝑤 (𝑥 − 𝑦)d𝑥d𝑦 + 𝜃 (𝑥2 − 𝑥1). (5.17)

Using (5.9) we obtain

𝐸 (Δ) = −
∫ Δ

0
𝑊 (𝑥)d𝑥 + 𝜃Δ. (5.18)

In Fig. 17 we show examples of the Lyapunov functional for the Amari model (5.1). We plot 𝐸 (Δ) for two

choices of the connectivity function 𝑤 (𝑥), and in both cases 𝐸 has one local maximum and one local

minimum, corresponding to the unstable and stable bump solution, respectively.
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Figure 17: Plot of 𝐸 (Δ) given by (5.18) for the Amari model (5.1) with a lateral inhibition kernel (4.2) (a)
and Mexican hat kernel (4.3) (b). In (a), there is a local maximum at Δ1 = 0.64 and a local minimum at
Δ2 = 6.9. In (b), there is a local maximum at Δ1 = 0.39 and a local minimum at Δ2 = 3.58. Parameters
as in Fig. 16.

5.4 Pinto’s and Ermentrout’s perturbation approach

The final stability analysis method that we consider is the one used by Pinto and Ermentrout [121]. The

approach is based on the analysis of the eigenvalues of the system linearized around the steady state. The

field model analyzed in [121] consists of two separate populations of excitatory and inhibitory neurons with

different time scales. In the limit case of instantaneous inhibition, the authors showed that their approach

reproduces Amari’s results. We study the Amari model using the linearization approach in both one and

two spatial dimensions by first investigating the existence of single bump solutions and then determining

their stability.

5.4.1 1D Amari model

Existence of bumps

Consider an equilibrium solution 𝑈 (𝑥) = lim
𝑡→∞

(𝑢 (𝑥, 𝑡)) satisfying

𝑈 (𝑥) =
∫ ∞

−∞
𝑤 (|𝑥 − 𝑦 |) 𝑓 (𝑈 (𝑦 − 𝜃 ))d𝑦. (5.19)

Let 𝑅 [𝑈 ] = {𝑥 |𝑈 (𝑥) > 𝜃 } be the region over which the field is excited. We can then rewrite (5.19) as

𝑈 (𝑥) =
∫
𝑅 [𝑈 ]

𝑤 (|𝑥 − 𝑦 |)d𝑦. (5.20)

For a stationary bump of width Δ = 𝑥2 − 𝑥1 the excited region is then given by the interval (𝑥1, 𝑥2) and

equation (5.20) takes the form

𝑈 (𝑥) =
∫ 𝑥2−𝑥

𝑥1−𝑥
𝑤 (𝑦)d𝑦. (5.21)
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Knowing that 𝑈 (𝑥1) = 𝑈 (𝑥2) = 𝜃 and setting 𝑥 = 𝑥1 and 𝑥 = 𝑥2, respectively, we have

𝜃 =
∫ 𝑥2−𝑥1

0
𝑤 (𝑦)d𝑦, (5.22a)

𝜃 =
∫ 0

𝑥1−𝑥2
𝑤 (𝑦)d𝑦. (5.22b)

We set 𝑥1 = −Δ
2 and 𝑥2 = Δ

2 and obtain the following necessary condition for the existence of a bump

𝜃 =𝑊 (Δ). (5.23)

In the case of a kernel with homogeneous lateral inhibition or a Mexican hat coupling function, it follows

from condition (5.23) that there is a maximum of two bump solutions for a given value of 𝜃 , one wide and

one narrow, as illustrated in Fig. 18. Condition (5.23) is the same as the existence condition obtained

using Amari’s stability analysis, (5.12).

Figure 18: Bump width Δ as a function of 𝜃 in the Amari model for a lateral inhibition kernel (4.2) with
𝐴𝑙𝑎𝑡 = 2, 𝜎𝑙𝑎𝑡 = 2, 𝑤𝑖𝑛ℎ = 0.5 (a) and Mexican hat kernel (4.3) with 𝐴𝑒𝑥 = 3, 𝜎𝑒𝑥 = 1.4, 𝐴𝑖𝑛ℎ = 1.5,
𝜎𝑖𝑛ℎ = 3 and𝑤𝑖𝑛ℎ = 0.2 (b).

Stability of bumps

To analyze the stability of a bump, we consider the equilibrium solution (5.19) and introduce a change in

width of the excited region under a small time-dependent perturbation𝜓

𝑢 (𝑥, 𝑡) = 𝑈 (𝑥) +𝜓 (𝑥, 𝑡). (5.24)

Combining equations (5.1) and (5.24) we obtain

𝜕

𝜕𝑡
[𝑈 (𝑥, 𝑡) +𝜓 (𝑥, 𝑡)] = −[𝑈 (𝑥, 𝑡) +𝜓 (𝑥, 𝑡)] +

∫ ∞

−∞
𝑤 ( |𝑥 − 𝑦 |) 𝑓 (𝑈 (𝑦) +𝜓 (𝑦, 𝑡) − 𝜃 )d𝑦. (5.25)
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Using first order Taylor expansion, we get

𝜕𝜓 (𝑥, 𝑡)
𝜕𝑡

= −𝑈 (𝑥, 𝑡)−𝜓 (𝑥, 𝑡)+
∫ ∞

−∞
𝑤 (|𝑥−𝑦 |) [𝑓 (𝑈 (𝑦)−𝜃 )+𝑓 ′(𝑈 (𝑦)−𝜃 )𝜓 (𝑦, 𝑡)]d𝑦+. . . , (5.26)

which reduces to

𝜕𝜓 (𝑥, 𝑡)
𝜕𝑡

= −𝜓 (𝑥, 𝑡) +
∫ ∞

−∞
𝑤 (|𝑥 − 𝑦 |) 𝑓 ′(𝑈 (𝑦) − 𝜃 )𝜓 (𝑦, 𝑡)d𝑦. (5.27)

Since the formal derivative of the step function is the Dirac delta function 𝜕𝐻
𝜕𝑢 = 𝛿 (𝑢 − 𝜃 ) we have∫ ∞

∞
𝑤 (𝑥 − 𝑦)𝐻 ′(𝑈 (𝑦) − 𝜃 )𝜓 (𝑦, 𝑡)d𝑦 =

∫ ∞

∞
𝑤 (𝑥 − 𝑦)𝛿 (𝑈 (𝑦) − 𝜃 )𝜓 (𝑦, 𝑡)d𝑦

=
∫

𝑤 (𝑥 −𝑈 −1(𝑧))𝛿 (𝑧 − 𝜃 )𝜓 (𝑈 −1(𝑧), 𝑡)d𝑧
|𝑈 ′(𝑈 −1(𝑧)) | =

𝑤 (𝑥 − 𝑥1)𝜓 (𝑥1, 𝑡)
|𝑈 ′(𝑥1) |

+ 𝑤 (𝑥 − 𝑥2)𝜓 (𝑥2, 𝑡)
|𝑈 ′(𝑥2) |

.

(5.28)

Assuming that solutions are of the separable form𝜓 (𝑥, 𝑡) = 𝑒𝜆𝑡 (𝜓 (𝑥)), Equation (5.27) gives

𝜆𝜓 (𝑥) = −𝜓 (𝑥) + 𝑤 (𝑥 − 𝑥1)𝜓 (𝑥1)
|𝑈 ′(𝑥1) |

+ 𝑤 (𝑥 − 𝑥2)𝜓 (𝑥2)
|𝑈 ′(𝑥2) |

. (5.29)

By setting 𝑥 = 𝑥1 and 𝑥 = 𝑥2, respectively, we have the two equations

𝜆𝜓 (𝑥1) = −𝜓 (𝑥1) +
𝑤 (0)𝜓 (𝑥1)
|𝑈 ′(𝑥1) |

+ 𝑤 (Δ)𝜓 (𝑥2)
|𝑈 ′(𝑥2) |

, (5.30a)

𝜆𝜓 (𝑥2) = −𝜓 (𝑥2) +
𝑤 (Δ)𝜓 (𝑥1)
|𝑈 ′(𝑥1) |

+ 𝑤 (0)𝜓 (𝑥2)
|𝑈 ′(𝑥2) |

. (5.30b)

In order to determine |𝑈 ′(𝑥) | we differentiate equation (5.21) and get

𝑈 ′(𝑥) = [𝑤 (𝑥1 − 𝑥) −𝑤 (𝑥2 − 𝑥)] . (5.31)

Since Δ = 𝑥2 − 𝑥1, we get

|𝑈 ′(𝑥𝑖) | = 𝑤 (0) −𝑤 (Δ), 𝑖 = 1, 2. (5.32)

We can then write the system (5.30) in the matrix form

𝐴 ·

𝜓 (𝑥1)

𝜓 (𝑥2)

 =


0

0

 ,
where the matrix 𝐴 is given by

𝐴 =


𝜆 + 1 − 𝑎 −𝑏

−𝑏 𝜆 + 1 − 𝑎

 ,
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with the parameters 𝑎 and 𝑏 defined as

𝑎 =
𝑤 (0)
𝑐

, 𝑏 =
𝑤 (Δ)
𝑐

, (5.33)

where

𝑐 = |𝑈 ′(𝑥1,2) |. (5.34)

The eigenvalues of 𝐴 read

𝜆± = −1 + 𝑎 ± 𝑏. (5.35)

We then have

𝜆− = 0, 𝜆+ =
2𝑤 (Δ)

𝑤 (0) −𝑤 (Δ) . (5.36)

𝜆− = 0 is an expected result of the translation invariance of the bump solutions due to the assumed

spatial symmetry of the coupling function 𝑤 (𝑥). The solution is stable if 𝑅𝑒 (𝜆+) < 0. Hence, the

stability condition is that a bump with width Δ is stable if

𝑤 (Δ) < 0. (5.37)

In Fig. 19 we plot the stability results for the two coupling functions used. In both cases, the solution curve

consists of two branches, the upper branch with wider bumps is stable (solid lines), whilst the lower branch

of narrow bumps is unstable (dashed lines). The two branches merge at the saddle-node bifurcation where

the stability change occurs.
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Figure 19: Bump stability in the Amari model for a lateral inhibition kernel (4.2) (a) and Mexican hat kernel
(4.3) (b). Solid (dashed) lines shows branches of stable (unstable) solutions. (c and d) Examples of stable
(black lines) and unstable (grey lines) bump solutions corresponding to the filled (unfilled) dots in panels a
and b. (c) Bump widths are Δ1 = 1.51 (unstable bump) and Δ2 = 5.99 (stable bump), threshold 𝜃 = 2.
(d) Bump widths are Δ1 = 0.39 (unstable bump) and Δ2 = 3.17 (stable bump), threshold 𝜃 = 0.5.
Remaining parameters as in Fig. 18.

5.4.2 2D Amari model

We now study the two-dimensional analog of (5.1)

𝜕𝑢 (r, 𝑡)
𝜕𝑡

= −𝑢 (r, 𝑡) +
∫
ℝ2
𝑤 (r − r′) 𝑓 (𝑢 (r′, 𝑡))dr′, (5.38)

where r = (𝑟, 𝜙), 𝑟 ∈ ℝ+ and 𝜙 ∈ [0, 2𝜋). The firing rate function 𝑓 (𝑢) is taken again as a Heav-

iside function with threshold 𝜃 given by (4.6). We consider a wizard hat weight distribution given by a

combination of modified Bessel functions of the second kind [24, 149]

𝑤 (𝑟 ) = 2
3𝜋

(𝐾0(𝑟 ) − 𝐾0(2𝑟 ) −𝐴(𝐾0(𝑟/𝜎) − 𝐾0(2𝑟/𝜎))) . (5.39)

An example of the rotationally symmetric function (5.39) is depicted in Fig. 20. As can be clearly seen, it

combines local excitation with surround inhibition.

Existence of bumps
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Figure 20: Weight distribution given by a combination of modified Bessel functions of the second kind as
defined in (5.39). Weight parameters are 𝐴 = 1/4 and 𝜎 = 2.

We consider a circularly symmetric bump solution of radius 𝑅 such that 𝑢 (r, 𝑡) = 𝑈 (𝑟 ) with 𝑈 (𝑅) = 𝜃 ,

𝑈 (𝑟 ) > 𝜃 for 𝑟 < 𝑅,𝑈 (𝑟 ) < 𝜃 for 𝑟 > 𝑅 and 𝑈 (𝑟 ) → 0 as 𝑟 → ∞.

A stationary solution of equation (5.38) then gives

𝑈 (𝑟 ) =
∫ 2𝜋

0

∫ 𝑅

0
𝑤 ( |r − r′|)𝑟 ′d𝑟 ′d𝜙, (5.40)

which using |r − r′| =
√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos𝜙 we can rewrite as

𝑈 (𝑟 ) =
∫ 2𝜋

0

∫ 𝑅

0
𝑤 (

√
𝑅2 + 𝑟 ′2 − 2𝑅𝑟 ′ cos𝜙)𝑟 ′d𝑟 ′d𝜙. (5.41)

The double integral in (5.41) can be calculated using the Fourier transforms and Bessel function identities.

We start with expressing𝑤 (𝑟 ) as a 2D Fourier transform using polar coordinates

𝑤 (𝑟 ) = 1
2𝜋

∫
ℝ2
𝑒𝑖r·k𝑤 (k)dk =

1
2𝜋

∫ ∞

0

(∫ 2𝜋

0
𝑒𝑖𝑟𝜌 cos𝜙𝑤 (𝜌)d𝜙

)
𝜌d𝜌, (5.42)

where𝑤 denotes the Fourier transform of𝑤 and k = (𝜌, 𝜙). Using the integral representation

1
2𝜋

∫ 2𝜋

0
𝑒𝑖𝑟𝜌 cos(𝜙−𝜁 )d𝜌 = 𝐽0(𝜌𝑟 ), (5.43)

where 𝐽0 is the Bessel function of the first kind, we express𝑤 (𝑟 ) in terms of its Hankel transform of order

zero

𝑤 (𝑟 ) =
∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌𝑟 )𝜌d𝜌, (5.44)

which, when substituted into (5.40), gives

𝑈 (𝑟 ) =
∫ 2𝜋

0

∫ 𝑅

0

(∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌 |r − r′|)𝜌d𝜌

)
𝑟 ′d𝑟 ′d𝜁 ′. (5.45)
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Figure 21: The bump radius is plotted as a function of 𝜃 for the Amari model. The coupling function is
given by 5.39, with 𝐴 = 1/4 and 𝜎 = 2.

We reverse the order of integration and use the addition theorem

𝐽0(𝜌
√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos 𝜁 ′) =

∞∑
𝑚=0

𝜖𝑚 𝐽𝑚 (𝜌𝑟 ) 𝐽𝑚 (𝜌𝑟 ′) cos𝑚𝜁 ′, (5.46)

where 𝜖0 = 1 and 𝜖𝑛 = 2 for 𝑛 ≥ 1. Then using the identity

𝐽1(𝜌𝑅)𝑅 = 𝜌
∫ 𝑅

0
𝐽0(𝜌𝑟 ′)𝑟 ′d𝑟 ′, (5.47)

we obtain

𝑈 (𝑟 ) = 2𝜋𝑅
∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌𝑟 ) 𝐽1(𝜌𝑅)d𝜌. (5.48)

Knowing that 𝑈 (𝑅) = 𝜃 , we obtain the following necessary condition for the existence of a bump

𝜃 = 2𝜋𝑅
∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌𝑟 ) 𝐽1(𝜌𝑅)d𝜌. (5.49)

For the wizard hat coupling function there is a maximum of two bump solutions as shown in Fig. 21. In

the next section we investigate the stability of the solutions.

Stability of bumps

In the following, we determine the linear stability of radially symmetric solutions. As in the one-dimensional

case, we study the stability of solutions with respect to small perturbations of the bump boundary. We

consider different possible perturbations of the circular boundary exhibiting𝐷𝑛 symmetry. Some examples

of low-order perturbations are shown in Figure 22.

We consider a steady state

𝑈 (r) =
∫
ℝ2
𝑤 (r − r′) 𝑓 (𝑈 (r′))dr′, (5.50)
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Figure 22: Examples of low-order perturbations of the bump boundary exhibiting 𝐷𝑛 symmetry.

and introduce time-dependent perturbations of the circular boundary

𝑢 (r, 𝑡) = 𝑈 (r) +𝜓 (r, 𝑡). (5.51)

We then look for solutions of the form

𝜓 (r, 𝑡) = 𝑒𝜆𝑡𝜓 (r), (5.52)

and get the eigenvalue equation

𝜆𝜓 (r) = −𝜓 (r) +
∫
ℝ2
𝑤 (r − r′)𝛿 (𝑈 (r′) − 𝜃 )𝜓 (r′)dr′. (5.53)

Using polar coordinates we can rewrite (5.53) as

𝜆𝜓 (𝑟, 𝜙) = −𝜓 (𝑟, 𝜙)

+
∫ 2𝜋

0
d𝜙′

∫ ∞

0
𝑟 ′d𝑟 ′𝑤 (

√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos𝜙)𝛿 (𝑈 (𝑟 ′) − 𝜃 )𝜓 (𝑟 ′, 𝜙 − 𝜙′) .

(5.54)

We then look for solutions of the form

𝜓 (𝑟, 𝜙) = 𝑒𝑖𝑛𝜙𝜓 (𝑟 ), (5.55)

where 𝑛 is the number of modes of the boundary perturbation (see Fig. 22).

Equation (5.54) then takes form

𝜆𝜓 (𝑟 ) = −𝜓 (𝑟 ) +
∫ 2𝜋

0
d𝜙′𝑅𝑤 (

√
𝑟 2 + 𝑅2 − 2𝑟𝑅 cos(𝜙 − 𝜙′))𝜓 (𝑅)𝑒

−𝑖𝑛𝜙

|𝑈 ′(𝑅) | . (5.56)

We set 𝑟 = 𝑅 and get

𝜆𝜓 (𝑅) = −𝜓 (𝑅) +
∫ 2𝜋

0
d𝜙𝑅𝑤 (𝑅

√
2 − 2 cos𝜙))𝜓 (𝑅)𝑒

−𝑖𝑛𝜙

|𝑈 ′(𝑅) | . (5.57)

The eigenvalues of 5.57 read

𝜆−1 = −1, (5.58a)
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𝜆𝑛 = −1 + 𝑅

|𝑈 ′(𝑅) |

∫ 2𝜋

0
d𝜙𝑤 (𝑅

√
2 − 2 cos𝜙))𝑒−𝑖𝑛𝜙 . (5.58b)

Note that 𝜆𝑛 is real, since after setting√
2 − 2 cos𝜙 = 2 sin

(
𝜙

2

)
, (5.59)

and rescaling 𝜙 we have

𝐼𝑚{𝜆𝑛} = − 2𝑅
|𝑈 ′(𝑅) |

∫ 𝜋

0
𝑤 (2𝑅 sin(𝜙)) sin(2𝑛𝜙)d𝜙 = 0, (5.60)

i.e., the integrand is odd-symmetric about 𝜋2 . Hence,

𝜆𝑛 = 𝑅𝑒{𝜆𝑛} = −1 + 𝑅

|𝑈 ′(𝑅) |

∫ 2𝜋

0
𝑤 (2𝑅 sin(𝜙/2)) cos(𝑛𝜙)d𝜙, (5.61)

with the integrand even-symmetric about 𝜋2 .

We evaluate the integral in (5.61) using Bessel functions∫ 2𝜋

0
𝑤 (2𝑅 sin(𝜙′/2)) cos(𝑛𝜙′)d𝜙′

=
∫ 2𝜋

0

(∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌 (2𝑅 sin(𝜙′/2)))𝜌d𝜌

)
cos𝜙′d𝜙′

= 2𝜋
∫ ∞

0
𝑤 (𝜌) 𝐽𝑛 (𝜌𝑅) 𝐽𝑛 (𝜌𝑅)𝜌d𝜌.

(5.62)

We then differentiate (5.48) with respect to 𝑟

𝑈 ′(𝑅) = 2𝜋𝑅
∫ ∞

0
𝑤 (𝜌) 𝐽1(𝜌𝑅) 𝐽1(𝜌𝑅)𝜌d𝜌. (5.63)

We can now rewrite the eigenvalues as

𝜆−1 = −1, (5.64a)

𝜆𝑛 = −1 +
∫ ∞
0
𝑤 (𝜌) 𝐽𝑛 (𝜌𝑅) 𝐽𝑛 (𝜌𝑅)𝜌d𝜌∫ ∞

0
𝑤 (𝜌) 𝐽1(𝜌𝑅) 𝐽1(𝜌𝑅)𝜌d𝜌

. (5.64b)

It follows from (5.64b) that 𝜆1 = 0, which is the result of the translation invariance of the system. The

points of azimuthal stability determined by the conditions 𝜆𝑛 = 0 for 𝑛 = 0, 2, . . . , 7 are shown in the Fig.

23.
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Figure 23: (a) Bump radius 𝑅 as a function of 𝜃 for the wizard hat weight distribution (5.39) with𝐴 = 1/4
and 𝜎 = 2. Solid line: stable solutions, dashed line: unstable solutions. Dots show points along the
branch where bumps become unstable to planar perturbations with 𝐷𝑛 symmetry. (b) Examples of stable
solution with radius 𝑅 = 2.65 (top) and unstable solution with radius 𝑅 = 1.11 (bottom) for 𝜃 = 0.125.
The red circle is the boundary of the bump where 𝑈 (𝑅) = 𝜃 .

5.5 Conclusion

In this chapter, we have discussed three methods that can be used to determine the stability of bump

solutions of the Amari model: Amari’s linear stability analysis, the Lyapunov method and Pinto and Er-

mentrout’s perturbation approach. With all three methods, we studied the one dimensional model with a

Heaviside firing rate function and two choices of the connectivity kernel. Pinto’s and Ermentrout’s pertur-

bation approach was also used to study the model in two dimensions. All three methods, as expected,

yield the same result: the co-existrence of a wider stable bump and a narrower unstable bump.
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6Stability analysis of the two-field model

6.1 Introduction

In this Chapter, we apply the three stability analysis methods presented in previous chapter to the two-field

model, starting with the one-dimensional case

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= −𝑢 (𝑥, 𝑡) + 𝑣 (𝑥, 𝑡) +
∫
ℝ

𝑤 (𝑥 − 𝑦) 𝑓 (𝑢 (𝑦, 𝑡) − 𝜃 )d𝑦, (6.1a)

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= −𝑣 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) −
∫
ℝ

𝑤 (𝑥 − 𝑦) 𝑓 (𝑢 (𝑦, 𝑡) − 𝜃 )d𝑦, (6.1b)

where 𝑓 (𝑢) is taken again as a Heaviside function (4.6) with threshold 𝜃 . Our choice of the coupling

function𝑤 (𝑥) is again the kernel with a spatially homogeneous inhibition (4.2) and the Mexican hat (4.3)

function for the one-dimensional model and the wizard hat function (5.39) for the two-dimensional case.

6.2 Amari’s linear stability analysis

Using formulas (5.2) - (5.6), we rewrite (6.1) at 𝑥 = 𝑥𝑖 (𝑡) as
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= −𝑢 (𝑥, 𝑡) + 𝑣 (𝑥, 𝑡) +
∫ 𝑥2 (𝑡)

𝑥1 (𝑡)
𝑤 ( |𝑥 − 𝑦 |)d𝑦, (6.2a)

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= −𝑣 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) −
∫ 𝑥2 (𝑡)

𝑥1 (𝑡)
𝑤 (|𝑥 − 𝑦 |)d𝑦. (6.2b)

Since 𝑢 (𝑥𝑖, 𝑡) = 𝜃 and 𝑢 (𝑥𝑖, 𝑡) + 𝑣 (𝑥𝑖, 𝑡) = 𝐾 , using (5.9) we have from (6.2a)

𝜕𝑢 (𝑥𝑖, 𝑡)
𝜕𝑡

= −2𝜃 + 𝐾 +𝑊 (𝑥2 − 𝑥1), 𝑖 = 1, 2. (6.3)

We obtain the system of ODEs for the boundary points 𝑥1 and 𝑥2

d𝑥1
d𝑡

=
−𝜕𝑢/𝜕𝑡
𝜕𝑢/𝜕𝑥

����
𝑥=𝑥1

= − 1
𝑐1

(−2𝜃 + 𝐾 +𝑊 (𝑥2 − 𝑥1)) , (6.4a)
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d𝑥2
d𝑡

=
𝜕𝑢/𝜕𝑡
𝜕𝑢/𝜕𝑥

����
𝑥=𝑥2

=
1
𝑐2

(−2𝜃 + 𝐾 +𝑊 (𝑥2 − 𝑥1)) . (6.4b)

We can then describe the change of length of the excited region, Δ(𝑡) = 𝑥2(𝑡) − 𝑥1(𝑡),

dΔ
d𝑡

=

(
1
𝑐1

+ 1
𝑐2

)
(−2𝜃 + 𝐾 +𝑊 (Δ)) . (6.5)

The existence of a solution of width Δ = 𝑥2 − 𝑥1 is determined by the roots of

𝐹 (Δ) = −2𝜃 + 𝐾 +𝑊 (Δ) = 0. (6.6)

The steady state of width Δ is stable if
d𝐹 (Δ)
dΔ

< 0, (6.7)

and unstable otherwise. We plot examples of function 𝐹 (Δ) in Figure 24.

Figure 24: Bump existence in the two-field model (6.1) for a lateral inhibition kernel (4.2) with 𝐴𝑙𝑎𝑡 = 1,
𝜎𝑙𝑎𝑡 = 1.5, 𝑤𝑖𝑛ℎ = 0.2 (a) and Mexican hat kernel (4.3) with 𝐴𝑒𝑥 = 3, 𝜎𝑒𝑥 = 1.5, 𝐴𝑖𝑛ℎ = 1.5, 𝜎𝑖𝑛ℎ = 3
and 𝑤𝑖𝑛ℎ = 0.2 (b). In both panels the threshold is 𝜃 = 0.7 (dotted line). In panel (a) there exist
two solutions with Δ1 = 0.51 (unstable) and Δ2 = 7.4 (stable). In panel (b) we see two solutions with
Δ1 = 0.31 (unstable) and Δ2 = 3.71 (stable).

6.3 Lyapunov method

We now derive the Lyapunov functional for the two-field model (6.1). The functional can be written as

𝐸 [𝑢] = −1
2

∫
Ω

∫
Ω
𝑤 (𝑥−𝑦) 𝑓 (𝑢 (𝑥, 𝑡)−𝜃 ) 𝑓 (𝑢 (𝑦, 𝑡)−𝜃 )d𝑥d𝑦+(2𝜃 − 𝐾)

∫
Ω
𝑓 (𝑢 (𝑥, 𝑡)−𝜃 )d𝑥 . (6.8)

For a bump of width Δ = (𝑥2 − 𝑥1) we have

𝐸 (Δ) = −1
2

∫ 𝑥2

𝑥1

∫ 𝑥2

𝑥1

𝑤 (𝑥 − 𝑦)d𝑥d𝑦 + (2𝜃 − 𝐾) (𝑥2 − 𝑥1). (6.9)
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Using (5.9), we obtain

𝐸 (Δ) = −
∫ Δ

0
𝑊 (𝑥)d𝑥 + (2𝜃 − 𝐾) Δ. (6.10)

We plot examples of function 𝐸 (Δ) in Figure 25. Similar to the Amari model, for both connectivity functions

considered we observe one local maximum and one local minimum, corresponding to unstable and stable

bump solutions, respectively.

Figure 25: Plot of 𝐸 (Δ) given by (5.18) for the two-field model (6.1) with a lateral inhibition kernel (4.2)
(a) and Mexican hat kernel (4.3) (b). In (a), there is a local maximum for Δ1 = 0.51 and a local minimum
for Δ2 = 7.4. In (b), there is a local maximum for Δ1 = 0.31 and a local minimum for Δ2 = 3.71.
Parameters as in Fig. 24.

6.4 Pinto’s and Ermentrout’s perturbation approach

In this section, we explore the existence and stability of the steady state of the two-field model using Pinto

and Ermentrout’s stability analysis [121]. We first analyze the model solutions in one spatial dimension.

Our analysis is then extended to two spatial dimensions in Section 6.4.2.

6.4.1 1D two-field model

Existence of bumps

We start by constructing stationary bump solutions 𝑢 (𝑥, 𝑡) = 𝑈 (𝑥), 𝑣 (𝑥, 𝑡) = 𝑉 (𝑥) that satisfy

𝑈 (𝑥) = 𝑉 (𝑥) +
∫ ∞

−∞
𝑤 (𝑥 − 𝑦) 𝑓 (𝑈 (𝑥 − 𝑦) − 𝜃 )d𝑦, (6.11a)

𝑉 (𝑥) = 𝑈 (𝑥) −
∫ ∞

−∞
𝑤 (𝑥 − 𝑦) 𝑓 (𝑈 (𝑥 − 𝑦) − 𝜃 )d𝑦. (6.11b)
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Figure 26: Bump width Δ as a function of 𝜃 in the two-field model for a lateral inhibition kernel (4.2) with
𝐴𝑙𝑎𝑡 = 2, 𝜎𝑙𝑎𝑡 = 2, 𝑤𝑖𝑛ℎ = 0.5 (a) and Mexican hat kernel (4.3) with 𝐴𝑒𝑥 = 3, 𝜎𝑒𝑥 = 1.4, 𝐴𝑖𝑛ℎ = 1.5,
𝜎𝑖𝑛ℎ = 3 and𝑤𝑖𝑛ℎ = 0.2 (b). Here, 𝐾 = 1.

For a single bump solution of width Δ = 𝑥2 − 𝑥1, the excited region is the interval 𝑥 ∈ (𝑥1, 𝑥2). The

system (6.11) then reduces to

𝑈 (𝑥) = 𝑉 (𝑥) +
∫ 𝑥2−𝑥

𝑥1−𝑥
𝑤 (𝑦)d𝑦, (6.12a)

𝑉 (𝑥) = 𝑈 (𝑥) −
∫ 𝑥2−𝑥

𝑥1−𝑥
𝑤 (𝑦)d𝑦. (6.12b)

We now use (6.12a) to determine the existence of stationary solutions of the model. Knowing that at the

bump boundaries 𝑈 (𝑥1) = 𝑈 (𝑥2) = 𝜃 holds, and setting 𝑥 = 𝑥1 and 𝑥 = 𝑥2, respectively, we have

𝜃 = 𝑉 (𝑥1) +
∫ 𝑥2−𝑥1

0
𝑤 (𝑦)d𝑦, (6.13a)

𝜃 = 𝑉 (𝑥2) +
∫ 0

𝑥1−𝑥2
𝑤 (𝑦)d𝑦. (6.13b)

We use (5.9) and set 𝑥1 = −Δ
2 and 𝑥2 = Δ

2 . Since𝑉 (𝑥) = 𝐾 −𝑈 (𝑥), we obtain the following necessary

conditions for the existence of a bump

𝜃 =
𝐾 +𝑊 (Δ)

2
= 𝐹 (Δ). (6.14)

If
𝐾

2
< 𝜃 <

𝐾 +𝑊𝑚𝑎𝑥

2
, there are two values, Δ1 and Δ2, that satisfy (6.14), that is, there are two

one-bump solutions with different widths for the same value of 𝜃 . If 0 < 𝜃 ≤ 𝐾

2
, there is one value of Δ

that satisfies (6.14). Hence, as in the case of the Amari model, there is maximum of two solutions for a

given value of 𝜃 for both connectivity functions considered, which we illustrate in Fig. 26.
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Stability of bumps

Having determined the existence of single bump solutions in our model, we now use the perturbation

approach to derive the stability conditions. We start with introducing the change in width of the excited

region under small perturbations𝜓 (𝑥, 𝑡) and 𝜁 (𝑥, 𝑡)

𝑢 (𝑥, 𝑡) = 𝑈 (𝑥) +𝜓 (𝑥, 𝑡), (6.15a)

𝑣 (𝑥, 𝑡) = 𝑉 (𝑥) + 𝜁 (𝑥, 𝑡). (6.15b)

Linearizing (6.1) about 𝑈 leads to the following evolution equations for the perturbations

𝜕𝜓 (𝑥, 𝑡)
𝜕𝑡

= −𝜓 (𝑥, 𝑡) + 𝜁 (𝑥, 𝑡) +
∫ ∞

−∞
𝑤 ( |𝑥 − 𝑦 |) 𝑓 ′(𝑈 (𝑦) − 𝜃 )𝜓 (𝑦, 𝑡)d𝑦, (6.16a)

𝜕𝜁 (𝑥, 𝑡)
𝜕𝑡

= −𝜁 (𝑥, 𝑡) +𝜓 (𝑥, 𝑡) −
∫ ∞

−∞
𝑤 (|𝑥 − 𝑦 |) 𝑓 ′(𝑈 (𝑦) − 𝜃 )𝜓 (𝑦, 𝑡)d𝑦. (6.16b)

We use (5.28) and assume separable perturbations (𝜓 (𝑥, 𝑡), 𝜁 (𝑥, 𝑡)) = 𝑒𝜆𝑡 (𝜓 (𝑥), 𝜁 (𝑥)). We obtain

the following eigenvalue equations

(𝜆 + 1)𝜓 (𝑥) = 𝜁 (𝑥) + 𝑤 (𝑥 − 𝑥1)𝜓 (𝑥1)
|𝑈 ′(𝑥1) |

+ 𝑤 (𝑥 − 𝑥2)𝜓 (𝑥2)
|𝑈 ′(𝑥2) |

, (6.17a)

(𝜆 + 1)𝜁 (𝑥) = 𝜓 (𝑥) − 𝑤 (𝑥 − 𝑥1)𝜓 (𝑥1)
|𝑈 ′(𝑥1) |

− 𝑤 (𝑥 − 𝑥2)𝜓 (𝑥2)
|𝑈 ′(𝑥2) |

. (6.17b)

We eliminate 𝜁 (𝑥) from (6.17a) using (6.17b)

(𝜆 + 1)𝜓 (𝑥) =
𝜓 (𝑥) − 𝑤 (𝑥−𝑥1)𝜓 (𝑥1)

|𝑈 ′(𝑥1) | − 𝑤 (𝑥−𝑥2)𝜓 (𝑥2)
|𝑈 ′(𝑥2) |

𝜆 + 1
+ 𝑤 (𝑥 − 𝑥1)𝜓 (𝑥1)

|𝑈 ′(𝑥1) |
+ 𝑤 (𝑥 − 𝑥2)𝜓 (𝑥2)

|𝑈 ′(𝑥2) |
. (6.18)

To calculate |𝑈 ′(𝑥𝑖) | we differentiate equation (6.12a) to get

𝑈 ′(𝑥) = 𝑉 ′(𝑥) + [𝑤 (𝑥1 − 𝑥) −𝑤 (𝑥2 − 𝑥)], (6.19)

and since Δ = 𝑥2 − 𝑥1, knowing that 𝑉 (𝑥) = 𝐾 −𝑈 (𝑥), we have

|𝑈 ′(𝑥𝑖) | =
����𝐾′ +𝑤 (𝑥1 − 𝑥𝑖) −𝑤 (𝑥2 − 𝑥𝑖)

2

���� = 𝐾′ +𝑤 (0) −𝑤 (Δ)
2

, 𝑖 = 1, 2, (6.20)

thus since 𝐾′ = 0 we have

|𝑈 ′(𝑥1,2) | =
𝑤 (0) −𝑤 (Δ)

2
. (6.21)
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By setting 𝑥 = 𝑥1 and 𝑥 = 𝑥2 in (6.18) we obtain the system of equations

𝐴 ·

𝜓 (𝑥1)

𝜓 (𝑥2)

 =


0

0

 ,
where the matrix 𝐴 is given by

𝐴 =


𝜆 + 1 − 1 + 𝑎

𝜆 + 1
− 𝑎 𝑏

𝜆 + 1
− 𝑏

𝑏

𝜆 + 1
− 𝑏 𝜆 + 1 − 1 + 𝑎

𝜆 + 1
− 𝑎


,

with the parameters 𝑎 and 𝑏 defined as

𝑎 =
𝑤 (0)

|𝑈 ′(𝑥1,2) |
, 𝑏 =

𝑤 (Δ)
|𝑈 ′(𝑥1,2) |

. (6.22)

The eigenvalues of 𝐴 satisfy

𝜆2
(
𝑎2 − 2𝑎(𝜆 + 2) − 𝑏2 + (𝜆 + 2)2

)
(𝜆 + 1)2 = 0. (6.23)

The eigenvalues of 𝐴 read

𝜆1,2 = 0, (6.24)

𝜆3,4 = 𝑎 ± 𝑏 − 2. (6.25)

The existence of two zero eigenvalues reflects the underlying translation symmetry of the two-field

model. The bump is marginally stable with respect to shifts in space as well as shifts in the amplitude.

The remaining eigenvalues are

𝜆3 = 𝑎 − 𝑏 − 2 =
2 (𝑤 (0) −𝑤 (Δ))
𝑤 (0) −𝑤 (Δ) − 2 = 0 (6.26)

and

𝜆4 = 𝑎 + 𝑏 − 2 =
2 (𝑤 (0) +𝑤 (Δ))
𝑤 (0) −𝑤 (Δ) − 2 = 0, (6.27)

thus, the stability of the bump will be determined by the sign of 𝑤 (Δ). Hence, a steady state of width Δ

is stable if

𝑤 (Δ) < 0. (6.28)

Fig. 27 demonstrates the stability of one-bump solutions. They come in pairs, and with increasing thresh-

old 𝜃 the two solutions annihilate in a saddle-node bifurcation. Therefore, for threshold values with two

existing bump solutions, only the larger bump is stable.
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Figure 27: Bump stability in the two-field model for a lateral inhibition kernel (4.2) (a) and Mexican hat
kernel (4.3) (b). Solid (dashed) lines show branches of stable (unstable) solutions. (c and d) Examples
of stable (black lines) and unstable (grey lines) bump solutions correspond to the filled (unfilled) dots in
the panels on the left. (c) Solution widths are Δ1 = 0.68 (unstable bump) and Δ2 = 8.03 (stable bump),
threshold 𝜃 = 1. (d) Solution widths are Δ1 = 0.48 (unstable bump) and Δ2 = 3.05 (stable bump),
threshold 𝜃 = 0.8. Remaining parameters as in Fig. 26.

6.4.2 2D two-field model

In what follows, we analyze the two-field neural field model in two spatial dimensions. The model reads

𝜕𝑢 (r, 𝑡)
𝜕𝑡

= −𝑢 (r, 𝑡) + 𝑣 (r, 𝑡) +
∫
ℝ2
𝑤 (r − r′) 𝑓 (𝑢 (r′, 𝑡))dr′, (6.29a)

𝜕𝑣 (r, 𝑡)
𝜕𝑡

= −𝑣 (r, 𝑡) + 𝑢 (r, 𝑡) −
∫
ℝ2
𝑤 (r − r′) 𝑓 (𝑢 (r′, 𝑡))dr′, (6.29b)

where r = (𝑟, 𝜙), 𝑟 ∈ ℝ+ and 𝜙 ∈ [0, 2𝜋). We consider a wizard hat weight distribution given by (5.39).

Existence of bumps

We consider a radially symmetric bump solution of radius 𝑅 such that 𝑢 (r, 𝑡) = 𝑈 (𝑟 ) with 𝑈 (𝑅) = 𝜃 ,

𝑈 (𝑟 ) > 𝜃 for 𝑟 < 𝑅, 𝑈 (𝑟 ) < 𝜃 for 𝑟 > 𝑅 and 𝑈 (𝑟 ) → 0 as 𝑟 → ∞. A stationary solution of system
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(6.29) then gives

𝑈 (𝑟 ) = 𝑉 (𝑟 ) +
∫ 2𝜋

0

∫ 𝑅

0
𝑤 ( |r − r′|)𝑟 ′d𝑟 ′d𝜙, (6.30a)

𝑉 (𝑟 ) = 𝑈 (𝑟 ) −
∫ 2𝜋

0

∫ 𝑅

0
𝑤 (|r − r′|)𝑟 ′d𝑟 ′d𝜙. (6.30b)

Using |r − r′| =
√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos𝜙 we rewrite system (6.30) as

𝑈 (𝑟 ) = 𝑉 (𝑟 ) +
∫ 2𝜋

0

∫ 𝑅

0
𝑤 (

√
𝑅2 + 𝑟 ′2 − 2𝑅𝑟 ′ cos𝜙)𝑟 ′d𝑟 ′d𝜙, (6.31a)

𝑉 (𝑟 ) = 𝑈 (𝑟 ) −
∫ 2𝜋

0

∫ 𝑅

0
𝑤 (

√
𝑅2 + 𝑟 ′2 − 2𝑅𝑟 ′ cos𝜙)𝑟 ′d𝑟 ′d𝜙. (6.31b)

The double integral in (6.31) can be calculated using the Fourier transforms and Bessel function identities

in the same way as for the Amari model. We use formulas (5.42) - (5.44) to get

𝑈 (𝑟 ) = 𝑉 (𝑟 ) +
∫ 2𝜋

0

∫ 𝑅

0

(∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌 |r − r′|)𝜌d𝜌

)
𝑟 ′d𝑟 ′d𝜙′, (6.32a)

𝑉 (𝑟 ) = 𝑈 (𝑟 ) −
∫ 2𝜋

0

∫ 𝑅

0

(∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌 |r − r′|)𝜌d𝜌

)
𝑟 ′d𝑟 ′d𝜙′. (6.32b)

We reverse the order of integration and use the addition theorem as in (5.46) and use the identity (5.47)

to obtain

𝑈 (𝑟 ) = 𝑉 (𝑟 ) + 2𝜋𝑅
∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌𝑟 ) 𝐽1(𝜌𝑅)d𝜌, (6.33a)

𝑉 (𝑟 ) = 𝑈 (𝑟 ) − 2𝜋𝑅
∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌𝑟 ) 𝐽1(𝜌𝑅)d𝜌. (6.33b)

Knowing that𝑈 (𝑅) = 𝜃 and 𝐾 = 𝑈 (𝑟 ) +𝑉 (𝑟 ) we get the following necessary condition for the existence

of a bump

𝜃 =
𝐾

2
+ 𝜋𝑅

∫ ∞

0
𝑤 (𝜌) 𝐽0(𝜌𝑟 ) 𝐽1(𝜌𝑅)d𝜌. (6.34)

For the wizard hat coupling function, as in the case of the Amari model, there is a maximum of two bump

solutions as shown in Fig. 28. In the next section we investigate the stability of these solutions.
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Figure 28: Bump radius 𝑅 as a function of 𝜃 for the two-field model. The coupling function is given by
5.39, with 𝐴 = 1/4 and 𝜎 = 2. Here, 𝐾 = 0.5.

Stability of a 2D bump

In the following we determine the linear stability of radially symmetric solutions. As for the previous case,

we study the stability with respect to small perturbations of the bump boundary. We consider different

possible perturbations of the circular boundary exhibiting 𝐷𝑛 symmetry (see Figure 22).

The stationary solution is given by

𝑈 (r) = 𝑉 (r) +
∫
ℝ2
𝑤 (r − r′) 𝑓 (𝑈 (r′))dr′, (6.35a)

𝑉 (r) = 𝑈 (r) −
∫
ℝ2
𝑤 (r − r′) 𝑓 (𝑈 (r′))dr′. (6.35b)

We introduce time-dependent perturbations of the circular boundary

𝑢 (r, 𝑡) = 𝑈 (r) +𝜓 (r, 𝑡), (6.36a)

𝑣 (r, 𝑡) = 𝑉 (r) + 𝜁 (r, 𝑡). (6.36b)

We then look for solutions of the separable form

(𝜓 (r, 𝑡), 𝜁 (r, 𝑡)) = 𝑒𝜆𝑡 (𝜓 (r), 𝜁 (r)), (6.37)

and get

𝜆𝜓 (r) = −𝜓 (r) + 𝜁 (r) +
∫
ℝ2
𝑤 (r − r′)𝛿 (𝑈 (r′) − ℎ)𝜓 (r′)dr′, (6.38a)
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𝜆𝜁 (r) = −𝜁 (r) +𝜓 (r) −
∫
ℝ2
𝑤 (r − r′)𝛿 (𝑈 (r′) − ℎ)𝜓 (r′)dr′. (6.38b)

We rewrite system (6.38) as

𝜆𝜓 (𝑟, 𝜙) = −𝜓 (𝑟, 𝜙) + 𝜁 (𝑟, 𝜙)

+
∫ 2𝜋

0
d𝜙′

∫ ∞

0
𝑟 ′d𝑟 ′𝑤 (

√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos𝜙)𝛿 (𝑈 (𝑟 ′) − ℎ)𝜓 (𝑟 ′, 𝜙 − 𝜙′),

(6.39a)

𝜆𝜁 (𝑟, 𝜙) = −𝜁 (𝑟, 𝜙) +𝜓 (𝑟, 𝜙)

−
∫ 2𝜋

0
d𝜙′

∫ ∞

0
𝑟 ′d𝑟 ′𝑤 (

√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos𝜙)𝛿 (𝑈 (𝑟 ′) − ℎ)𝜓 (𝑟 ′, 𝜙 − 𝜙′).

(6.39b)

We look for solutions of the form

(𝜓 (𝑟, 𝜙), 𝜁 (𝑟, 𝜙)) = 𝑒𝑖𝑛𝜙 (𝜓 (𝑟 ), 𝜁 (𝑟 )), (6.40)

where 𝑛 is the number of modes of the boundary perturbation (see Fig. 22). System (6.39) then takes

the form

𝜆𝜓 (𝑟 )𝑒𝑖𝑛𝜙 = −𝜓 (𝑟 )𝑒𝑖𝑛𝜙 + 𝜁 (𝑟 )𝑒𝑖𝑛𝜙

+
∫ 2𝜋

0
d𝜙′

∫ ∞

0
𝑟 ′d𝑟 ′𝑤 (

√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos(𝜙 − 𝜙′))𝛿 (𝑈 (𝑟 ′) − ℎ)𝜓 (𝑟 ′)𝑒𝑖𝑛(𝜙−𝜙 ′),

(6.41a)

𝜆𝜁 (𝑟 )𝑒𝑖𝑛𝜙 = −𝜁 (𝑟 )𝑒𝑖𝑛𝜙 +𝜓 (𝑟 )𝑒𝑖𝑛𝜙

−
∫ 2𝜋

0
d𝜙′

∫ ∞

0
𝑟 ′d𝑟 ′𝑤 (

√
𝑟 2 + 𝑟 ′2 − 2𝑟𝑟 ′ cos(𝜙 − 𝜙′))𝛿 (𝑈 (𝑟 ′) − ℎ)𝜓 (𝑟 ′)𝑒𝑖𝑛(𝜙−𝜙 ′) .

(6.41b)

After dividing both sides by 𝑒𝑖𝑛𝜙 we have

𝜆𝜓 (𝑟 ) = −𝜓 (𝑟 ) + 𝜁 (𝑟 )

+
∫ 2𝜋

0
d𝜙′𝑅𝑤 (

√
𝑟 2 + 𝑅2 − 2𝑟𝑅 cos(𝜙 − 𝜙′))𝜓 (𝑅)𝑒

−𝑖𝑛𝜙

|𝑈 ′(𝑅) | ,
(6.42a)

𝜆𝜁 (𝑟 ) = −𝜁 (𝑟 ) +𝜓 (𝑟 )

−
∫ 2𝜋

0
d𝜙′𝑅𝑤 (

√
𝑟 2 + 𝑅2 − 2𝑟𝑅 cos(𝜙 − 𝜙′))𝜓 (𝑅)𝑒

−𝑖𝑛𝜙

|𝑈 ′(𝑅) | .
(6.42b)

We set 𝑟 = 𝑅 and get

𝜆𝜓 (𝑅) = −𝜓 (𝑅) + 𝜁 (𝑅)

+
∫ 2𝜋

0
d𝜙𝑅𝑤 (𝑅

√
2 − 2 cos𝜙))𝜓 (𝑅)𝑒

−𝑖𝑛𝜙

|𝑈 ′(𝑅) | ,
(6.43a)
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𝜆𝜁 (𝑅) = −𝜁 (𝑅) +𝜓 (𝑅)

−
∫ 2𝜋

0
d𝜙𝑅𝑤 (𝑅

√
2 − 2 cos𝜙))𝜓 (𝑅)𝑒

−𝑖𝑛𝜙

|𝑈 ′(𝑅) | .
(6.43b)

The system (6.43) can be written as

𝐴 ·

𝜓 (𝑅)

𝜁 (𝑅)

 =


0

0

 ,
where the matrix 𝐴 is given by

𝐴 =


𝜆 + 1 − 𝑆𝑛 −1

−1 + 𝑆𝑛 𝜆 + 1

 ,
with

𝑆𝑛 =
𝑅

|𝑈 ′(𝑅) |

∫ 2𝜋

0
d𝜙𝑤 (𝑅

√
2 − 2 cos𝜙))𝑒−𝑖𝑛𝜙 . (6.44)

Then, we find that

(𝜆 + 1 + 𝑆𝑛) (𝜆 + 1) − (−1 + 𝑆𝑛) (−1 + 𝑆𝑛) = 0. (6.45)

Hence the eigenvalues of 𝐴 are

𝜆−1 = 0, (6.46)

𝜆𝑛 = −2 + 𝑆𝑛 . (6.47)

Note that 𝜆𝑛 is real, since after setting√
2 − 2 cos𝜙 = 2 sin

(
𝜙

2

)
, (6.48)

and rescaling 𝜃 we have

𝐼𝑚{𝜆𝑛} = − 2𝑅
|𝑈 ′(𝑅) |

∫ 𝜋

0
𝑤 (2𝑅 sin(𝜙)) sin(2𝑛𝜙)d𝜙 = 0, (6.49)

i.e., the integrand is odd-symmetric about 𝜋2 . Hence,

𝜆𝑛 = 𝑅𝑒{𝜆𝑛} = −2 + 𝑅

|𝑈 ′(𝑅) |

∫ 2𝜋

0
𝑤 (2𝑅 sin(𝜙/2)) cos(𝑛𝜙)d𝜙, (6.50)

with the integrand even-symmetric about 𝜋2 .

We evaluate the integral in (6.50) using Bessel functions (5.62) and differentiate (6.33a) with respect to 𝑟

𝑈 ′(𝑅) = 𝑉 ′(𝑅) − 2𝜋𝑅
∫ ∞

0
𝑤 (𝜌) 𝐽1(𝜌𝑅) 𝐽1(𝜌𝑅)𝜌d𝜌. (6.51)
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Knowing that 𝐾 = 𝑈 (𝑟 ) +𝑉 (𝑟 ) we have

𝑈 ′(𝑅) = 𝐾′

2
− 𝜋𝑅

∫ ∞

0
𝑤 (𝜌) 𝐽1(𝜌𝑅) 𝐽1(𝜌𝑅)𝜌d𝜌. (6.52)

We can now write the eigenvalues of 𝐴 as

𝜆−1 = 0, (6.53)

𝜆𝑛 = −2 + 4𝜋𝑅
𝐾′ + 2𝜋𝑅

∫ ∞
0
𝑤 (𝜌) 𝐽𝑛 (𝜌𝑅) 𝐽𝑛 (𝜌𝑅)𝜌d𝜌∫ ∞

0
𝑤 (𝜌) 𝐽1(𝜌𝑅) 𝐽1(𝜌𝑅)𝜌d𝜌

. (6.54)

Since 𝐾′ = 0 we have

𝜆−1 = 0, (6.55)

𝜆𝑛 = −2 + 2

∫ ∞
0
𝑤 (𝜌) 𝐽𝑛 (𝜌𝑅) 𝐽𝑛 (𝜌𝑅)𝜌d𝜌∫ ∞

0
𝑤 (𝜌) 𝐽1(𝜌𝑅) 𝐽1(𝜌𝑅)𝜌d𝜌

. (6.56)

Unlike in the Amari model, we have 𝜆−1 = 0 (compare with (5.64a)). We conclude that this zero eigenvalue

results from the bump being marginally stable to perturbations of the amplitude. It follows from (6.56)

that 𝜆1 = 0, which is the result of the spatial translation invariance of the system. For 𝑛 = 0, 2, . . . , 7, we

plot the points of azimuthal stability determined by the conditions 𝜆𝑛 = 0 in Fig. 29.
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Figure 29: (a) Bump radius 𝑅 as a function of 𝜃 in the two-field model for the wizard hat weight distribution
(5.39) with 𝐴 = 1/4 and 𝜎 = 2. Dots show points along the branch where bumps become unstable to
planar perturbations with 𝐷2 . . . 𝐷7 symmetry. (b) Examples of stable solution with radius 𝑅 = 3.49 (top)
and unstable solution with radius 𝑅 = 0.83 (bottom) for 𝜃 = 0.3. The red circle indicates the boundary of
the bump where𝑈 (𝑅) = 𝜃 . Here, 𝐾 = 0.5.

6.5 Conclusion

In this chapter, we have demonstrated that all three methods that we used for analyzing the Amari model

can be generalized to the analysis of the two-field model. We used a similar setting as in the previous

chapter, i.e. lateral inhibition and Mexican hat kernels in one dimension, and a wizard hat function in

two dimensions. The main conclusion is that with respect to the existence and stability of single bump

solutions the two models show the same qualitative behavior. Single bumps appear in pairs, with the

narrower bump being unstable and the wider bump being stable.

62



7Numerical analysis of 𝑁 -bump solutions

7.1 Introduction

In the previous chapter, we concentrated our efforts on the stability analysis of single bump solutions

in neural field models following Amari’s seminal work [3]. It was shown later by Laing et al. [98] that

the Amari model with Mexican-hat kernel and Heaviside step function does not support stable 𝑁 -bump

solutions consisting of 𝑁 ≥ 2 disjoint areas of excitation. Numerical evidence suggest, however, that

stable 𝑁 -bumps might exist if a sigmoid function is used and the individual bumps are separated by

a distance where the interaction strength is weak [37]. The search for general conditions supporting

stable 𝑁 -bump solutions has triggered investigation on connectivity functions with more than one zero

crossing. It has been shown by Laing et al. [98] that a connectivity function of oscillatory type (4.4), with

alternating regions of lateral excitation and lateral inhibition, supports stable multi-bump solutions. This

line of research has been later extended by Ferreira et al. [55] to include also conditions on the external

inputs that are able to trigger the evolution of these attractor solutions.

The goal of this chapter is threefold. First, to verify in numerical model simulations the hypotheses

suggested by the analysis of the space-clamped model (4.11) that the two-field model supports bump

solutions with the shape depending on the initial conditions. Second, to introduce numerical bifurcation

techniques that allow us to find and to track as model parameters vary single and multi-bump solutions

of the two-field model with lateral inhibition kernel. Third, to directly compare 𝑁 -bump solutions and their

dependence on model parameters for the Amari and the two-field model with oscillatory interaction kernel.

There exist several software packages available for carrying out the numerical continuation, such as AUTO-

07P [42], Matlab package MATCONT [41] and𝐶++ library Trilinos [135], to give but a few examples. These

tools were designed for low-dimensional problems and are not suitable for analysing high-dimensional

systems of equations that result from the discretization of the neural field equations [97]. A possible

workaround is to reduce the neural field equation to equivalent ODE (whenΩ ⊂ ℝ) or PDE (whenΩ ⊂ ℝ2)

63



CHAPTER 7. NUMERICAL ANALYSIS OF 𝑁 -BUMP SOLUTIONS

formulation that show the same qualitative behavior of the pattern formation process. Both strategies have

been used in neural field literature. Examples of ODE formulations can be found in [71, 98, 154]; PDEs

were used in [38, 99, 100]. This reduction makes it possible to apply standard continuation packages

to investigate the behavior of neural field models. A commonly used tool is AUTO-07P (standalone or

embedded in software package XPPAUT [52]), as for example in [38, 71, 98, 100]. The Trilinos library

has been also used to study behavior of neural field equations [124, 153, 154].

For the present work, we choose to follow the approach outlined in [123] and adapt the Matlab code

available in [8]. It allows us to find steady state solutions of both the Amari model and the two-field model

with an oscillatory coupling function or a Mexican hat coupling function. Themain advantage of this method

is that it can be applied directly to the full model, without the need to rely on ODE or PDE aproximations.

This is possible due to the usage of Newton–GMRES solvers combined with a fast Fourier transform (FFT)

employed for computing the convolution term [123]. Since the continuation method requires that the

transfer function is differentiable, we use a sigmoid function with a sufficiently large slope parameter 𝛽 to

approximate the step function.

An immediate question is which parameter(s) we should choose for the numerical continuation. For the

oscillatory kernel, we decide to use as examples the firing threshold 𝜃 and parameter 𝑏 of the kernel, and

fix the remaining parameters of the models. This choice allows us to compare our results with findings

in literature, where 𝑁 -bump solutions of neural field equations have been studied numerically in terms of

both 𝜃 (e.g., [9, 37, 99]) and 𝑏 (e.g., [45, 98]). For the Mexican hat coupling function, we use threshold

𝜃 as a continuation parameter. It is important to keep in mind that the bifurcation methods used in this

chapter can be applied to study other model parameters as well.

7.2 Numerical bifurcation method

7.2.1 Pseudo-arclength continuation

Numerical continuation is a method for finding solutions of equations

𝐹 (v, 𝑝) = 0, (7.1)

where v is the (𝑀 + 1)-dimensional column vector with components 𝑢0, 𝑢1, . . . , 𝑢𝑀 , and 𝐹 : ℝ𝑀 ×ℝ →

ℝ𝑀 . We can find stable solutions of (7.1) by numerically integrating the system for a sufficiently long time.

Both stable and unstable solutions of (7.1) can be found using Newton’s method, starting sufficiently close
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to them. By repeating this step and varying parameter 𝑝 we obtain a branch of solutions to (7.1), the

procedure known as natural parameter continuation [68]. The main disadvantage of this approach is that

it fails if a branch contains fold points, i.e. turning points with respect to the parameter 𝑝.

One way to overcome this limitation is to drop the natural parametrization by 𝑝 and use some other

parameterization, which is the main idea of the pseudo-arclength continuation method proposed by Keller

[85]. We give a brief overview of the method below.

Instead of the natural parametrization by 𝑝, the curve Γ is now parametrised by arclength 𝑠, thus Γ(𝑠) =

(v(𝑠), 𝑝 (𝑠)) is a curve of solutions to 𝐹 (v, 𝑝). Given one of the solutions of (7.1), (v0, 𝑝0), we want to find

a nearby solution, (v1, 𝑝1), which also satisfies (7.1). It must also satisfy the pseudo-arclength condition

(v1 − v0)𝑇 ¤v0 + (𝑝1 − 𝑝0) ¤𝑝0 − Δ𝑠 = 0, (7.2)

where Δ𝑠 is the pseudo-arclength stepsize, (¤v0, ¤𝑝0) is the tangent vector to the curve at (v0, 𝑝0), normal-

ized to have length 1 and a superscript 𝑇 indicates transpose. The overdot indicates differentiation with

respect to arclength, 𝑠. Geometrically it means that we find a solution (v1, 𝑝1) of the equation 𝐹 (v, 𝑝) = 0

in a hyperplane that is both a distance Δ𝑠 from the point on the curve (v0, 𝑝0) and perpendicular to the

direction vector (¤v0, ¤𝑝0), see Figure 30.

To find point (v1, 𝑝1), we use the following Newton iteration to solve (7.1) and (7.2) simultaneously for

(v(𝑠), 𝑝 (𝑠))

©­«
v(𝑖)1

𝑝 (𝑖)1

ª®¬ =
©­«
v(𝑖−1)1

𝑝 (𝑖−1)1

ª®¬ − 𝐽−1(𝑖−1) ©­«
𝐹 (v(𝑖−1)1 , 𝑝 (𝑖−1)1 )

(v(𝑖−1)1 − v0)𝑇 ¤v0 + (𝑝 (𝑖−1)1 − 𝑝0) ¤𝑝0 − Δ𝑠

ª®¬ , (7.3)

for 𝑖 = 1, 2, . . . , (𝑀 + 1)(𝑀+1) , where

𝐽(𝑖) =
©­«
𝐹𝑣 𝐹𝑝

¤v0 ¤𝑝0
ª®¬ (7.4)

is the (𝑀 + 2) × (𝑀 + 2) Jacobian of the augmented system, and the partial derivatives are evaluated

at (v(𝑖)1 , 𝑝
(𝑖)
1 ). The stability of the point (v1, 𝑝1) depends on the eigenvalues of 𝐹𝑣 evaluated at this point.

Next points on the curve of solutions are found in successive Newton iterations.

7.2.2 Problem setting

Here we give an overview of the set up of our system and describe how Avitabile’s numerical continuation

software [8] can be applied to neural field models. Our approach is explained for the Amari model, the
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Figure 30: A scheme of the relation expressed by (7.2). The solid line indicates the curve of solutions, and
the tangent to this curve at (𝑣0, 𝑝0) is shown by an arrow.

extension to two fields is straightforward. We consider the model

𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) +
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′ + 𝑔(x), (7.5)

posed on a domain Ω which is a subset of ℝ𝑑 . In the following we use fields with dimensions 𝑑 = 1 and

𝑑 = 2. We choose a finite domain sufficiently large that there is no activity near the boundaries in order to

imitate the infinite domain. In particular, for one-dimensional models we assume the domain Ω : [−𝐿, 𝐿],

𝐿 = 12𝜋 , which we discretise over a uniform grid of 𝑁 = 216 points.

The firing rate function is the sigmoidal function given by (4.7). We employ two types of lateral connectivity,

the classical Mexican hat function (4.3) and the decaying oscillatory function (4.4).

The term 𝑔(x) represent weak external input (𝑔(x) � 1). Its role is to break the translational invariance

of the system so that we can apply Newton iterations directly to (7.5) [123].

Numerical computations of the model (7.5) are performed, discretizing a large but finite domain Ω =

[−𝐿, 𝐿]𝑑 with 𝑁 evenly distributed grid points in each spatial direction and imposing periodic boundary

conditions. We approximate 𝑢 on a grid Ω𝑁 = {(𝑥𝑖, 𝑦 𝑗 )}𝑁𝑖,𝑗=1 and collect the corresponding approximate

values of 𝑢 in a vector u

𝑢𝑖 𝑗 ≈ 𝑢 (𝑥𝑖, 𝑦𝑖), u = {𝑢𝑖 𝑗 }𝑁𝑖,𝑗=1 ∈ ℝ𝑁𝑑 . (7.6)

Similarly, we get vectorsw, f(u), g ∈ ℝ𝑁𝑑 for the approximations to𝑤 , 𝑓 (𝑢) and 𝑔, respectively. Further,

we introduce the discrete convolution,

(𝑢 ∗ 𝑣)𝑖 𝑗 ≈ F −1(F (𝑢)F (𝑣)) (𝑥𝑖, 𝑦𝑖), u ∗ v = {(𝑢 ∗ 𝑣)𝑖 𝑗 }𝑁𝑖,𝑗=1 ∈ ℝ𝑁𝑑 , (7.7)

66



7.3. MEXICAN HAT KERNEL

where F and F −1 is the Fourier transform and its inverse, respectively. The spatially discrete version of

the evolution equation (7.5) is thus given by

¤u = −u + w ∗ f(u). (7.8)

For numerical continuation of steady states of (7.5), we solve the system of algebraic equations

F(u) = −u + w ∗ f(u) = 0, (7.9)

whose associated Jacobian-vector product is given by

J(u)v = −v + w ∗ (f’(u)v) , u, v ∈ ℝ𝑁 , (7.10)

where f’(u) = diag (𝑓 ′(𝑢11), . . . , 𝑓 ′(𝑢𝑁𝑁 )) ∈ ℝ𝑁×𝑁 . We solve the system (7.9) iteratively using the

Newton generalised minimal residual method (Newton-GMRES) implemented in MATLAB and continue

the solution with a secant method using the code adapted from [8]. Eigenvalue computations are also

performed using the Jacobian-vector products (7.10).

7.3 Mexican hat kernel

In this section we study both neural field models in one spatial dimension (𝑑 = 1). We consider the

Mexican hat connectivity function (4.3) and steep sigmoidal firing rate function (4.7) using 𝛽 = 50 as an

example.

7.3.1 Amari model

We begin our numerical study with the Amari model (7.5). First we integrate the model with the initial

activation profile at 𝑡 = 0 given by

𝑢 (𝑥, 0) = 𝐴𝑢𝑒 (−𝑥
2/2𝜎2𝑢) . (7.11)

Weak external inhomogeneous input 𝑔(𝑥) is given by

𝑔(𝑥) = 𝐺0𝑒 (−𝑥
2/2𝜎2𝑔), (7.12)

where 𝐺0 = 0.001 and 𝜎𝑔 =
√
10. In Figure 31 we show the 1-bump solution of the Amari model with a

Mexican hat kernel (4.3) for a set of three different initial profiles (7.11). As expected for the Amari model,

the shape of the solution is determined solely by the connectivity function𝑤 (𝑥) and is not affected by the

initial state of the field. Every initial condition converged to the same bump attractor.
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Figure 31: One-bump solution of the Amari model (7.5) (black) for a set of three different initial profiles
(7.11) (grey) with parameters: 𝐴𝑢 = 2, 𝜎𝑢 = 4 (wide curve), 𝐴𝑢 = 1, 𝜎𝑢 = 2 (intermediate curve),
𝐴𝑢 = 0.6, 𝜎𝑢 = 0.75 (narrow curve). The kernel 𝑤 (𝑥) is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1,
𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and𝑤𝑖𝑛ℎ = 0.1. Threshold 𝜃 = 0.5 (dotted line).

We now perform numerical continuation of the solution shown in Fig. 31 using the threshold 𝜃 as a

continuation parameter. The resulting solution curve is depicted in Figure 32. The curve consists of an

upper branch of stable solutions and a lower branch of unstable solutions that connect in a saddle-node

bifurcation. The numerical continuation technique thus confirms the analytical result of Chapter 6.

Figure 32: (a) Bifurcation curve showing one-bump solutions of (7.5) with a Mexican hat kernel (4.3) as
the parameter 𝜃 is varied. Solid (dashed) lines represent stable (unstable) solutions. (b) Examples of
solutions at points 𝑃1 (unstable) and 𝑃2 (stable) for 𝜃 = 0.5 (dotted line). Parameters of the kernel as in
Fig. 31.
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7.3.2 Two-field model

We now investigate localized activation patterns of the two-field model

𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) + 𝑣 (x, 𝑡) +
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′, (7.13a)

𝜕𝑣 (x, 𝑡)
𝜕𝑡

= −𝑣 (x, 𝑡) + 𝑢 (x, 𝑡) −
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′, (7.13b)

with the Mexican hat kernel (4.3).

To highlight the difference to the Amari model we focus on two results, 1) the dependence of the bump

shape on initial conditions, and 2) the existence of numerically stable two-bump solutions.

Model with initial condition 𝑢 (𝑥, 0) + 𝑣 (𝑥, 0) = 𝐾

The initial conditions for 𝑢 (𝑥, 0) and 𝑣 (𝑥, 0) are given by

𝑢 (𝑥, 0) = 𝐴𝑢𝑒 (−𝑥
2/2𝜎2𝑢), (7.14a)

𝑣 (𝑥, 0) = 𝐾 − 𝑢 (𝑥, 0), (7.14b)

where 𝐾 is a constant. The Gaussian pattern is used in the initial state of the 𝑢 -layer to ensure that a

localized solution evolves in the field.

We show in Figure 33 example solutions of (7.13) for two different values of the threshold 𝜃 . These values

correspond to the two cases considered in Section 4.2 when discussing the space-clamped field equation:

𝐾 < 2𝜃 and 𝐾 ≥ 2𝜃 . The first case, with 𝐾 = 1 and 𝜃 = 0.8, is depicted in panels (a) and (b). If the

initial state of the 𝑢 -field (7.14a) is below the threshold 𝜃 , both fields converge to a uniform subthreshold

activity value 𝑢 (𝑥) = 𝑣 (𝑥) = 𝐾/2 (panel a). If its value is higher than 𝜃 , a stable one-bump solution

evolves (panel b).

We now consider the second case (𝐾 ≥ 2𝜃 ). In Figure 33, we show one-bump solution that evolved from

a wider (panel c) and a narrower (panel d) initial condition (7.14). Consistent with the Amari case, the

same bump solution independent of the initial conditions evolves.

We now perform numerical continuation of the model (7.13a) with initial profile (7.14) with 𝐾 = 1, 𝐴𝑢 = 1

and 𝜎𝑢 = 1, using threshold 𝜃 as a continuation parameter. The resulting solution curve is depicted in

Figure 34. The curve consists of an upper branch of stable solutions and a lower branch of unstable

solutions.
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Figure 33: Solutions at time 𝑡 = 50 of the two-field model (7.13) (black lines) for different initial profiles
(7.14) with 𝐾 = 1. (a) 𝑢 (𝑥) = 𝑣 (𝑥) = 0.5, 𝜃 = 0.8. (b) 𝑢 (0, 𝑡) = 1.315, 𝑣 (0, 𝑡) = −0.315, 𝜃 = 0.8. (c)
𝐴𝑢 = 0.75, 𝜎𝑢 = 1, 𝑢 (0, 𝑡) = 1.22, 𝑣 (0, 𝑡) = −0.22, 𝜃 = 0.4. (d) 𝐴𝑢 = 1.5, 𝜎𝑢 = 4, 𝑢 (0, 𝑡) = 1.22,
𝑣 (0, 𝑡) = −0.22, 𝜃 = 0.4. The kernel 𝑤 (𝑥) is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25,
𝜎𝑖𝑛 = 2.5 and𝑤𝑖𝑛ℎ = 0.1. Threshold 𝜃 = 0.5 (dotted line). Compare with the fixed points in Fig. 14.
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Figure 34: (a) Bifurcation curve showing one-bump solutions of (7.13a) with a Mexican hat kernel (4.3)
as the parameter 𝜃 is varied. Solid (dashed) lines represent stable (unstable) solutions. (b) Examples of
solutions at points 𝑃1 (unstable) and 𝑃2 (stable) for 𝜃 = 0.8 (dotted line). Parameters of the kernel as in
Fig. 33.
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Model with initial condition 𝑢 (𝑥, 0) + 𝑣 (𝑥, 0) = 𝐾 (𝑥)

Now instead of using a constant value for the initial sum, 𝑢 (𝑥, 0) + 𝑣 (𝑥, 0) = 𝐾 , we choose the sum to

be a Gaussian function and investigate how this choice affects the bump solutions.

The inhomogeneous initial condition for is given by

𝑢 (𝑥, 0) = 𝑣 (𝑥, 0) = 𝐾𝑛 (𝑥)/2, 𝐾𝑛 (𝑥) =
𝑛∑
𝑗=1

𝐴𝐾 𝑗𝑒

(
−(𝑥−𝑥𝐾𝑗 )2/2𝜎2𝐾

)
. (7.15)

We show in Figure 35 one-bump solutions of (7.13) that evolved from wider (panel a) and narrower (panel b)

initial condition (7.15). Unlike the previous example (7.14), different initial conditions now lead to different

bump solutions with a shape determined by the initial condition. Using wider (narrower) Gaussian function

𝐾 (𝑥) leads to evolution of a wider (narrower) bump.

Figure 35: One-bump solution of the two-field model (7.13) (black lines) for two different initial profiles
(7.15) (grey) with 𝐴𝐾1 = 0.75, 𝜎𝐾1 = 1, 𝑥𝐾1 = 0 (a) and 𝐴𝐾1 = 1.5, 𝜎𝐾1 = 4, 𝑥𝐾1 = 0 (b). Parameters of
the kernel as in Fig. 33. Threshold 𝜃 = 0.5 (dotted line).

We now perform numerical continuation of the model (7.13) with initial profile (7.15) with 𝐴𝐾1 = 1 and

𝜎𝐾1 = 1, using threshold 𝜃 as a continuation parameter. The resulting solution curve is depicted in Figure

36 (top left). Again, we can see an upper branch consisting of stable solutions and lower branch with

unstable solutions. There is also an additional branch of stable subthreshold bumps, which does not exist

in the Amari model, satisfying 𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) = 𝐾 (𝑥)/2 for any value 𝜃 > 0.57.

In order to study the relation between the shape of the initial condition (7.15) and the solution structure

of the model, we perform numerical continuation of bump solutions analogously to the previous example,

but with a wider Gaussian profile in𝐾 (𝑥). The resulting bifurcation curve is shown in Figure 36 (top right).

We can see the same co-existence of an upper (stable) and a lower (unstable) branch of suprathreshold

solutions as before and a branch of stable subthreshold solutions for 𝜃 > 1.07. Increasing the width of

𝐾 (𝑥) results in a larger range of parameter values 𝜃 for which a stable one-bump exists.
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Figure 36: Top row: Bifurcation curve showing one-bump solutions of (7.13a) with the initial condition
(7.15) with 𝐴𝐾1 = 1, 𝜎𝐾1 = 1, 𝑥𝐾1 = 0 (left) and 𝐴𝐾1 = 2, 𝜎𝐾1 = 2, 𝑥𝐾1 = 0 (right) as the parameter
𝜃 is varied. Solid (dashed) lines represent stable (unstable) solutions. Examples of solutions at points
𝑃1, 𝑃3 (stable) and 𝑃2 (unstable) for a narrower and a wider profile of 𝐾 (𝑥) are shown in the left and
right column, respectively. Threshold 𝜃 = 0.8 (left column) and 𝜃 = 1.25 (right column) (dotted line).
Parameters of the kernel as in Fig. 33.

73



CHAPTER 7. NUMERICAL ANALYSIS OF 𝑁 -BUMP SOLUTIONS

Next we look at two-bump solutions of (7.13) obtained with a bimodal initial condition 𝐾2(𝑥) given by

(7.15). Figure 37 shows the resulting bifurcation curve as 𝜃 is varied. We can see an upper (stable) and

lower (unstable) branch of suprathreshold solutions exist and a branch of stable subthreshold solutions

with 𝑢 (𝑥) = 𝑣 (𝑥) = 𝐾 (𝑥)/2 for 𝜃 > 0.80.

Figure 37: Bifurcation curve showing two-bump solutions of (7.13a) with the initial condition (7.15) with
𝐴𝐾1,2 = 1.5, 𝜎𝐾1,2 = 1, 𝑥𝐾1,2 = ±1.9 as the parameter 𝜃 is varied. Solid (dashed) lines represent stable
(unstable) solutions. Examples of two-bump solutions at points 𝑃1, 𝑃3, 𝑃4 (stable) and 𝑃2 (unstable) are
shown. Threshold 𝜃 (dotted line): 𝜃 = 1.9 (𝑃1), 𝜃 = 0.82 (𝑃2 and 𝑃3), 𝜃 = 0.4 (𝑃4). Parameters of the
kernel as in Fig. 33.

To evaluate the dependence of the inter-peak distance on model parameters, Fig. 38 depicts the

bifurcation curve when the lateral inhibition parameter 𝜎𝑖𝑛ℎ is varied. As illustrated by the two pairs of

stable and unstable two-bumps, (P2,P3) and (P1,P4), respectively, the distance decrease with increasing

𝜎𝑖𝑛ℎ. It is important to stress that the two bumps exist at a distance where the boundary points of a bump

receive different levels of inhibition form the second bump since there is a gradient in the lateral inhibition
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Figure 38: Bifurcation curve showing two-bump solutions of (7.13a) with the initial condition (7.15) with
𝐴𝐾1,2 = 1.5, 𝜎𝐾1,2 = 1, 𝑥𝐾1,2 = ±1.9 as the parameter 𝜎𝑖𝑛ℎ is varied. Solid (dashed) lines represent stable
(unstable) solutions. Examples of two-bump solutions at points 𝑃1, 𝑃2 (stable) and 𝑃3, 𝑃4 (unstable) are
shown. 𝜎𝑖𝑛ℎ = 3 (𝑃2 and 𝑃3), 𝜎𝑖𝑛ℎ = 4 (𝑃1 and 𝑃4). Remaining parameters as in Fig. 33.

profile of the Mexican-hat coupling. In the Amari model, this inhibition gradient causes a continuous drift

of the bump in opposite direction. The observed “bump repulsion” effect has been already discussed by

Amari [3].

We now study three-bump solutions of (7.13) as the parameter 𝜃 varies from 2 to 0, starting from a trimodal

initial condition 𝐾3(𝑥) given by (7.15). The bifurcation curve and some example solutions are shown in

Fig. 39. We can again see a subthreshold solution with 𝑢 (𝑥) = 𝑣 (𝑥) = 𝐾 (𝑥)/2 (𝑃1 in Fig. 39).

As 𝜃 decreases, the solution undergoes a fold bifurcation giving rise to branch segment with solutions

consisting of a single bump flanked by two subthreshold patterns (solutions 𝑃2 and 𝑃3). As we move

further along the solution curve, the middle bump decreases below threshold 𝜃 , while two outside bumps

becoming suprathreshold. As a result, we see a branch segment with two-bump solutions separated by a
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subthreshold bump in the middle (solutions 𝑃4 and 𝑃5). The middle bump increases, eventually reaching

threshold 𝜃 and we can observe a branch of three-bump solutions (𝑃6 and 𝑃7 in Fig. 39).

Figure 39: Bifurcation curve showing three-bump solutions of (7.13a) with the initial condition (7.15) with
𝐴𝐾 𝑗 = 1.5, 𝜎𝐾 𝑗 = 1.5, 𝑥𝐾1,2,3 ∈ {−5, 0, 5} as the parameter 𝜃 is varied. Solid (dashed) lines represent
stable (unstable) solutions. Examples of bump solutions at points 𝑃1 to 𝑃7 are shown. The kernel 𝑤 (𝑥)
is given by (4.3) with 𝐴𝑒𝑥 = 2.5, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 0.8, 𝜎𝑖𝑛 = 2 and𝑤𝑖𝑛ℎ = 0.1. For details see the text.
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7.4 Oscillatory kernel

In this section, we study both neural field models with oscillatory connectivity function (4.4) in one and

two spatial dimensions. The firing rate function is again a steep sigmoidal function (4.7).

7.4.1 Amari model

For one spatial dimension (𝑑 = 1), we find 𝑁 -bump solutions by numerically integrating the model with

the initial condition

𝑢 (𝑥, 0) = 𝐼 cos
(
𝑙𝑥

𝐿

)
exp

(
− (𝑙𝑥/𝐿)2

)
, (7.16)

where 𝐼 controls the amplitude and 𝑙 > 0 is the parameter allowing to vary the width of the initial condition,

with the width of 𝑢 (𝑥, 0) increasing as 𝑙 is decreased.

We concentrate on symmetric solutions with an odd number of bumps only. We note that other 𝑁 -bump

solutions exist, e.g. solutions with an even number of bumps.

Once a stable solution is found using the numerical integration, we can select a specific model parameter

and compute branches of solutions using numerical continuation method as described before. We begin

with the firing threshold, 𝜃 . Figure 40, panel (a), illustrates the resulting solution branches. We plot the

maximum activation level 𝑢𝑚𝑎𝑥 (𝑥) 𝑥 ∈ Ω, as a function of the continuation parameter, 𝜃 . The solid

(dashed) lines represent stable (unstable) solutions. We observe a characteristic bifurcation structure

called snaking in the neural field literature [9, 98, 123]. The solution curve undergoes a series of fold

bifurcations, with two additional bumps added to the solution at each fold on the left side of the curve.

As we ascend the snaking curve, the solution branches come closer to each other. We plot the 𝐿2 norm

of the solution, | |𝑢 | |2, as the function of 𝜃 in the panel (b), so that the separation of branches is better

visible.

For 𝑁 ∈ {1, 3, 5, 7}, 𝑁 -bump solutions come in pairs of bumps which differ in the maximum value 𝑢𝑚𝑎𝑥 .

Only the pattern with the stronger activation is stable, which mirrors the analytical result of one-bump

solutions [3, 35]. Examples of solution pairs chosen from the computed branches are displayed in Figure

40, panel (c). As 𝜃 increases, pairs of stable and unstable solutions annihilate in saddle-node bifurcations.

We terminate our numerical computations with 𝑁 = 7 when the bump solutions approach the limits of

the finite domain Ω.

We now perform the continuation with respect to the parameter 𝑏, that determines the amplitude of the

oscillations in the connectivity function𝑤 (𝑥) [98]. We investigate 1- and 3-bump solutions and show the
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Figure 40: Bifurcation curves showing 1-, 3-, 5- and 7-bump solutions of (7.5) where 𝜃 is the continuation
parameter. Solid (dashed) lines represent stable (unstable) solutions. (a) 𝑢𝑚𝑎𝑥 is plotted as a function of
𝜃 . (b) | |𝑢 | |2 is plotted as a function of 𝜃 . (c) Several examples of solutions at points 𝑃1 to 𝑃8 are shown.
The initial condition for the solutions is given by (7.16) with 𝐼 = 4 and 𝑙 = 12. Remaining parameters:
𝑏 = 0.2 and 𝛽 = 50.

results in Figure 41. Panel (a) shows the global maximum of 𝑢 (𝑥) as a function of 𝑏; panel (b) shows the

𝐿2 norm of 𝑢 as a function of 𝑏. A selection of solution examples is shown in panel (c).

Similar as for parameter 𝜃 , the 1- and 3-bump solutions come in pairs of one stable solution and one

unstable solution that are destroyed in saddle-node bifurcations. As parameter 𝑏 increases, the curves

representing families of 1- and 3-bump solutions come closer together and finally overlap. This is caused

by the fact that higher values of 𝑏 affect the oscillations on the borders of 1- and 3-bump solutions, but

the maximum activation value 𝑢𝑚𝑎𝑥 does not change. The separation of solution curves is better visible

when we plot the 𝐿2 norm as a function of 𝑏 (panel (b)). Again, we can see a snaking phenomenon, i.e.

the solutions acquire more bumps as the solution norm increases. This finding was already described in

[98].

We now consider model (7.5) in two spatial dimensions, i.e. the domain Ω is now a subset of ℝ2. We

discretise Ω : [−32, 32]2 using a uniform grid of 211 × 211 points. The weak external inhomogeneous
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Figure 41: Bifurcation curves showing 1- and 3-bump solutions of (7.5) where 𝑏 is the continuation pa-
rameter. Solid (dashed) lines represent stable (unstable) solutions. (a) 𝑢𝑚𝑎𝑥 is plotted as a function of 𝑏.
(b) | |𝑢 | |2 is plotted as a function of 𝑏. (c) Several examples of solutions at points 𝑃1 to 𝑃4 are shown. The
initial condition for the solutions is given by (7.16) with 𝐼 = 4 and 𝑙 = 12. Remaining parameters: 𝜃 = 1
and 𝛽 = 50.

input 𝑔(x) is given by

𝑔(x) = 𝐺0 exp

(
−𝑥

2 + 𝑦2
𝜎2𝑔

)
, (7.17)

where 𝐺0 = 0.001 and 𝜎𝑔 =
√
10. It brakes the translational invariance of the system and allows us to

apply the numerical continuation method to the model. The initial profile 𝑢 (x, 0) is given by

𝑢 (x, 0) = 8 exp

(
−𝑥

2 + 𝑦2
6

)
. (7.18)

We numerically integrate the equation (7.5) with the initial condition (7.18) to a steady state. Next we

continue this solution with 𝜃 as the continuation parameter. The result is shown in Figure 42 where we

plot the maximum of 𝑢 as a function of 𝜃 . As in the one-dimensional model, the solutions come in pairs:

one solution with the larger value𝑢𝑚𝑎𝑥 is stable and the other with a smaller𝑢𝑚𝑎𝑥 is unstable. The stability

changes at saddle-node bifurcations. As the maximum value of 𝑢 continues to increase, stable one-bump
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solution change into unstable “bump-with-ring” solution, i.e. a central bump surrounded by one ring (not

shown). This behavior was previously described in [99, 100].

Figure 42: (a) Bifurcation curve showing 1-bump solutions of (7.5) as the parameter 𝜃 is varied. As the
maximum of 𝑢 increases, the one-bump solution changes into a “bump-with-ring” solution. (b) Several
examples of solutions at points 𝑃1 to 𝑃4 are shown. Remaining parameters: 𝑏 = 0.4 and 𝛽 = 30.

7.4.2 Two-field model

We now consider the two-field model (7.13) where 𝑓 (𝑢) and𝑤 (𝑥) are given by (4.7) and (4.4), respectively.

We first consider the one-dimensional model, with initial condition analogous to (7.16)

𝑢 (𝑥, 0) = 𝐼 cos
(
𝑙𝑥

𝐿

)
exp

(
−

(
𝑙𝑥

𝐿

)2)
, (7.19a)

𝑣 (𝑥, 0) = 𝐾 − 𝑢 (𝑥, 0), 𝐾 = 1, (7.19b)

where 𝐼 is the amplitude of the initial profile and 𝑙 > 0 controls its width.

We now find the solution curves of (7.13) using numerical continuation, starting again with 𝜃 as a continua-

tion parameter. The results are displayed in Figure 43. Comparing the solution branches with those of the

Amari model (Figure 40), we can see that the addition of a second field equation to the model did not in-

troduce any qualitative changes to the solution structure. As in the Amari model, 𝑁 -bump solutions come

in pairs of one stable and one unstable solution, annihilating in saddle-nodes bifurcations as 𝜃 increases.

Snaking behavior of 𝑁 -bump solutions is clearly visible when looking at the 𝐿2 norm of the solution plotted

as a function of 𝜃 (panel (b) of Figure 43).

Next we look at the 𝑁 -bump solutions of (7.13) as the parameter 𝑏 varies. Figure 44 shows the resulting

bifurcation diagrams. We can see again pairs of stable and unstable solutions that annihilate one another

80



7.4. OSCILLATORY KERNEL

Figure 43: Bifurcation curves showing 1-, 3-, 5- and 7-bump solutions of (7.13a) where 𝜃 is the continuation
parameter. Solid (dashed) lines represent stable (unstable) solutions. (a) 𝑢𝑚𝑎𝑥 is plotted as a function of
𝜃 . (b) | |𝑢 | |2 is plotted as a function of 𝜃 . (c) Several examples of solutions at points 𝑃1 to 𝑃8 are shown.
The initial condition for the solutions is given by (7.19) with 𝐼 = 4 and 𝑙 = 12. Remaining parameters:
𝑏 = 0.2 and 𝛽 = 50. Compare with Figure 40.

in saddle-node bifurcations as 𝑏 is increased. When plotting the global maximum of 𝑢 as a function of

𝑏 (panel (a)), the curves of 1-, 3- and 5-bump solutions approach one another and finally overlap as 𝑏

increases. By plotting the 𝐿2 norm of 𝑢 as a function of 𝑏, we can clearly see a separation of solution

branches (panel (b)). The snaking structure is again present. Representative solutions are shown in panel

(c). Similarly as for parameter 𝜃 , the solution structure resembles qualitatively that of the Amari model

(compare Figure 41).

We now consider model (7.13) in two spatial dimensions, i.e. now Ω ⊂ ℝ2. We discretise the domain

Ω : [−32, 32]2 using a grid of 210 × 210 points and integrate (7.13) to a steady state. To break the

translational symmetry of the system we apply the weak input 𝑔(x) given by (7.17). The initial condition

is given by

𝑢 (x, 0) = 5 exp

(
−𝑥

2 + 𝑦2
6

)
. (7.20a)
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Figure 44: Bifurcation curves showing 1-, 3- and 5-bump solutions of (7.13a) where 𝑏 is the continuation
parameter. Solid (dashed) lines represent stable (unstable) solutions. (a) 𝑢𝑚𝑎𝑥 is plotted as a function of
𝑏. (b) | |𝑢 | |2 is plotted as a function of 𝑏. (c) Several examples of solutions at points 𝑃0 to 𝑃6 are shown.
The initial condition for the solutions is given by (7.19) with 𝐼 = 4 and 𝑙 = 12. Remaining parameters:
𝜃 = 1 and 𝛽 = 50. Compare with Figure 41.

𝑣 (x, 0) = 𝐾 − 𝑢 (x, 0), 𝐾 = 0.5. (7.20b)

We now find solution curves in terms of the parameter 𝜃 using numerical continuation. The solution

structure is again similar to that of the Amari model. This becomes clear when looking at Figure 45,

where we show the bifurcation diagram for the two-dimensional model (compare Figure 42). The solutions

occur again in pairs and bump stability changes at saddle node bifurcations. With increasing maximum

values of 𝑢, a stable one-bump solution changes into unstable “bump-with-ring” solution, as previously

observed in the Amari model.
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Figure 45: (a) Bifurcation curve showing 1-bump solutions of (7.13a) as the parameter 𝜃 is varied. As
the maximum of 𝑢 increases, the 1-bump solution transition into a bump-with-ring solution, i.e. a central
bump surrounded by one ring. (b) Several examples of solutions at points 𝑃1 to 𝑃4 are shown. Remaining
parameters: 𝑏 = 0.4 and 𝛽 = 30. Compare with Figure 42.

7.5 Conclusion

In this chapter we have used numerical continuation techniques to analyze localized solutions of both the

Amari model and the two-field model.

In Section 7.3 we considered the classical Mexican hat connectivity function. For the Amari model, we

observed in the bifurcation diagram an upper branch of stable one-bump solutions and a lower branch

of unstable one-bump solutions. The resulting bifurcation curve for single bumps in the two-field model

is qualitatively the same as in the Amari model when the sum of the initial conditions is spatially ho-

mogeneous. These results match, as expected, our analytical findings of the previous chapter. We then

extended our numerical investigation of the two-field model to the case with spatially inhomogeneous initial

conditions with a typical Gaussian shape. In addition to single bump solutions, we found also stable two-

and three-bump solutions, which is not observed in the case of the Amari model. We note that those solu-

tions are obtained with a sigmoidal firing rate function, since the Heaviside function cannot be used in the

numerical continuation method [123]. We believe however that the choice of sufficiently large steepness

parameter value 𝛽 approximates the step function well.

Section 7.4 was dedicated to the study of 𝑁 -bump solutions in both models with oscillatory coupling

function. Using the Amari model in 1D, we confirmed results known from the literature including bifurcation

curves with the typical snaking structure. Similarly, the snaking phenomenon is also observed in the two-

field model, with qualitatively the same bifurcation structure and stability of bump solutions. In an extension

of the numerical continuation method to the two-dimensional case we identified for both models a whole

range of threshold values 𝜃 for which stable and unstable one-bump solutions coexist.
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8Working memory application1

8.1 Introduction

In this chapter we study input-driven solutions of the novel two-field model introduced in Chapter 4. In

particular we are interested in multi-bump solutions triggered by external inputs and their application to

working memory modeling. First we look at the existence and stability of 𝑁 -bump solutions in the two-field

model and discuss their impact on modeling different cognitive functions. We then systematically compare

the pattern formation process in the Amari and the two-field model in tasks with multiple memory items.

Specifically, we are interested to understand how input-induced variations of the memory strength affect

the inference of nearby memory traces and their spatial drift in response to random activity fluctuations.

We consider the Amari model given by (2.9) and the two-field model given by (9.1) with the weight

function taken as Mexican-hat (4.3). The firing rate function 𝑓 (𝑢) is chosen as a Heaviside function with

threshold 𝜃 given by (4.6). The time-dependent external input 𝐼 (𝑥, 𝑡) to the 𝑢 -field is modeled as one or

more Gaussians centered at positions 𝑥𝑐 𝑗 :

𝐼 (𝑥, 𝑡) = (𝐻𝑡0 (𝑡) − 𝐻𝑡1 (𝑡))
∑
𝑗

𝐴𝐼 𝑗𝑒

(
−(𝑥−𝑥𝑐 𝑗 )2/2𝜎2𝐼

)
, (8.1)

where 𝐻𝑡0 (𝑡) and 𝐻𝑡1 (𝑡) represent step functions with threshold 𝑡0 and 𝑡1, respectively, so that the input

starts at 𝑡 = 𝑡0 and ends at 𝑡 = 𝑡1. Input strength is controlled by 𝐴𝐼 𝑗 > 0.

8.2 Existence and stability of 𝑁 -bump solutions

It is well know that continuous attractor networks have difficulties to simultaneously stabilize multiple

bumps due to the constraints imposed by lateral inhibition and the interference between nearby patterns

[3, 162]. This limitation has been addressed in computational studies by introducing additional processing
1The content of this chapter is based on [169].
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mechanism such as short-term synaptic facilitation [129] or by using interaction kernels that are not of

lateral-inhibition type [55, 101]. However, already Amari [4] pointed out that for the connectivity function

(4.3) stable multiple bumps may exist at distances, |𝑥 | > 𝑥𝑐 , where the lateral inhibition is constant

(see e.g. [84] for a WM application). It is straightforward to derive a condition for the existence of a 𝑁 -

bump which is constrained by the summed inhibition that a bump receives from the 𝑁 − 1 neighboring

patterns. Without loss of generality, we assume that the bump is located in the interval
[
−Δ

2 ,
Δ
2

]
and

that the remaining 𝑁 − 1 pulses are located in the intervals
[
𝑥1 − Δ

2 , 𝑥1 +
Δ
2

]
,
[
𝑥2 − Δ

2 , 𝑥2 +
Δ
2

]
, …,[

𝑥𝑁−1 − Δ
2 , 𝑥𝑁−1 + Δ

2

]
, with 𝑥𝑖+1 − 𝑥𝑖 > Δ + 𝑥𝑠 , 𝑖 = 1, 2, . . . , 𝑁 − 1. That is, 𝑢 (𝑥) > 𝜃 for 𝑥 ∈[

−Δ
2 ,

Δ
2

]
∪

[
𝑥1 − Δ

2 , 𝑥1 +
Δ
2

]
∪ . . . ∪

[
𝑥𝑁−1 − Δ

2 , 𝑥𝑁−1 + Δ
2

]
, and 𝑢 (𝑥) ≤ 𝜃 elsewhere.

Equilibrium solutions of the two-field model are given by

𝑈 (𝑥) = 𝑉 (𝑥) +
∫ Δ

2

− Δ
2

𝑤 (𝑦)d𝑦 +
∫ 𝑥1+ Δ

2

𝑥1− Δ
2

𝑤 (𝑦)d𝑦 + . . . +
∫ 𝑥𝑁−1+ Δ

2

𝑥𝑁−1− Δ
2

𝑤 (𝑦)d𝑦, (8.2a)

𝑉 (𝑥) = 𝑈 (𝑥) −
∫ Δ

2

− Δ
2

𝑤 (𝑦)d𝑦 −
∫ 𝑥1+ Δ

2

𝑥1− Δ
2

𝑤 (𝑦)d𝑦 − . . . −
∫ 𝑥𝑁−1+ Δ

2

𝑥𝑁−1− Δ
2

𝑤 (𝑦)d𝑦. (8.2b)

Since at the boundaries of a bump 𝑈 (−Δ
2 ) = 𝑈 ( Δ2 ) = 𝜃 ,𝑈 (𝑥) +𝑉 (𝑥) = 𝐾 and∫ 𝑥𝑖+ Δ

2

𝑥𝑖− Δ
2

𝑤 (𝑦)d𝑦 = −Δ𝑔𝑚𝑒𝑥 , (8.3)

we get the existence condition for 𝑁 -bump solutions

𝐹 (Δ) = −2𝜃 + 𝐾 +𝑊 (Δ) − (𝑁 − 1)Δ 𝑔𝑚𝑒𝑥 = 0. (8.4)

The width of an individual bump of a N-bump solution can be thus found graphically by looking on the inter-

section of the plot of𝑊 (Δ) with the line 2𝜃 −𝐾 + (𝑁 −1)Δ𝑔𝑚𝑒𝑥 . Fig. 46 shows an example for the case

𝐾 = 2𝜃 and 𝑁 = 2. The maximum number of stable bumps that the specific connection function sup-

ports is𝑁 = 6. A further increase of lateral inhibition would destabilize the bumps since d𝑊 (Δ)/dΔ > 0.

The analogous condition for the existence of a 𝑁 -bump solutions in the Amari model is given by

𝐹 (Δ) = −𝜃 +𝑊 (Δ) − (𝑁 − 1)Δ 𝑔𝑚𝑒𝑥 = 0. (8.5)

For the example of Fig. 46, the maximum number of bumps reduces in this case to 𝑁 = 3.

We show in the next section that different to the Amari model [101], the two-field model supports the

existence and stability of true two-bump solutions for which the inter-peak distance is smaller than 𝑥𝑐 .
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Figure 46: Existence of 𝑁 one-bump solutions in the two-field model with the Mexican hat kernel (4.3).
Threshold 𝜃 = 0.5 and 𝐾 = 1. Straight lines show the condition (8.4) for 𝑁 = 2 and 𝑁 = 6. Kernel𝑤 is
given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.1.

8.3 Input driven bump solutions

In working memory applications, classical bump attractor models implement the encoding and mainte-

nance of briefly presented visual input as an all-or-none process. The information is either stored in a

self-stabilized bump with a shape defined by the recurrent interactions or the information is completely

lost since neural activity decays back to resting state. However, a growing body of experimental evidence

indicates that this binary classification may be insufficient as a description of WM storage, because the rep-

resentational quality of WM items may differ depending on sensory attributes of the input or task demands.

For instance, the salience of the visual input manipulated through varying stimulus strength (or contrast) is

known to affect WM representations. Consistent with the notion of memory-associated persistent activity,

a graded modulation of sustained population activity as a function of stimulus contrast has been described

in a WM task. Figure 47 shows various bump solutions of the two-field integrator model in which input

attributes are systematically varied. In panels (a) and (b), the attractor network converts a transient input

into a persistent output which is proportional to the input amplitude. A comparison of panels (a) and (c)

illustrates that the bump also represents faithfully input width. This property can be exploited for instance

to encode uncertainty in the sense of an explicit probability code [109]. Higher uncertainty is then repre-

sented by a wider activation pattern across the neural population tuned to a continuous input feature (e.g.,

representing ranges of movement direction, [12]). In panel (d), the localized input of panel (a) is applied

but lasting three times as long. The bump amplitude (measured above threshold) is three times larger,

as expected by perfect integration. The two-field model can thus be used to model the encoding of input

duration [172] if one assumes that the input amplitude is first normalized by upstream sensory processing

[29]. Figure 48 shows the temporal evolution of a bump in an example in which the input strength changes

86



8.3. INPUT DRIVEN BUMP SOLUTIONS

over time. Such a nonstationary input stream can be expected in any natural environment. Again, the

bump amplitude reflects the total external input applied to the population. The observed “ramping” activity

is a hallmark of “drift-diffusion” models of decision making which assume the continuous accumulation

of sensory and other evidence to a threshold (for review see [22]). Importantly, to work as a robust neural

integrator over a longer timescale of a decision process, the network dynamics should hold the activity

level without significant decay or growth when an input signal vanishes. Figure 49 shows this integrator

property in an example in which two inputs are presented sequentially at the same field site 𝑥 = 0. As

can be seen in the time evolution plot, the population activity stabilizes at a constant level after cessation

of the inputs at times 𝑡3 and 𝑡5, respectively.

Figure 47: Solutions at time 𝑡 = 50 of the model (9.1) created with transient inputs 𝐼 (𝑥, 𝑡) given by (8.1)
with variation of (b) input strength 𝐴𝐼 , (c) input width 𝜎𝐼 and (d) input duration 𝑑𝐼 . Parameters of the
inputs: (a) 𝐴𝐼 𝑗 = 1, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1 (b) 𝐴𝐼 𝑗 = 3, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1 (c) 𝐴𝐼 𝑗 = 1, 𝜎𝐼 𝑗 = 6, 𝑑𝐼 𝑗 = 1 (d)
𝐴𝐼 𝑗 = 1, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 3. The kernel 𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5
and 𝑔𝑚𝑒𝑥 = 0.1. Threshold 𝜃 = 0.5 (dotted line), 𝐾 = 0.

The existence of stable multi-bump solutions shown in Section 8.2 does not necessarily mean that their evo-

lution can be triggered by external inputs. In field models of lateral inhibition type, any existing suprathresh-

old activity will amplify the fast inhibitory feedback and suppress further excitatory activity. This means

that in order to create an input-driven multi-bump no processing advantage should be given to a specific

subpopulation in terms of the timing and the strength of the input. For the two-field model, the competitive
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Figure 48: Effect of applying a dynamic input with continuously increasing strength. Parameters of the
input: 𝐴𝐼 𝑗 = [1, 3], 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 3. The kernel 𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25,
𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.1. Threshold 𝜃 = 0.5 (dotted line), 𝐾 = 0.

Figure 49: Time evolution of center positions of field 𝑢 and 𝑣 during integration of two transient inputs. At
time 𝑡 = 1 we apply an input with 𝐴𝐼 𝑗 = 2, 𝜎𝐼 𝑗 = 1 and 𝑑𝐼 𝑗 = 1. Then at time 𝑡 = 5 we apply an input
with 𝐴𝐼 𝑗 = 0.5, 𝜎𝐼 𝑗 = 1 and 𝑑𝐼 𝑗 = 2. 𝐾 = 0, 𝜃 = 0.6.

effect of lateral inhibition is predicted to be counterbalanced to some extent since the spatial integration

of the 𝑣 -field with an inverted Mexican hat profile propagates excitation outwards from stimulated regions.

Figure 50 shows that in both models a three-bump solution evolves when three identical, transient inputs

are applied at the same time. The situation is different for a sequential stimulation protocol (Figure 51).

In the Amari case, only the first input triggers the evolution of a bump whereas the more balanced dy-

namics of the two-field model stabilizes again a three-bump solution. It is worth noting that suppression

effects due to lateral inhibition can be also observed in the two-field model. In the next section we show

that when inputs with different amplitudes are applied, the bump representation of a weaker input may

become suppressed below threshold.
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Figure 50: Solutions of the Amari model (a) and the two-field model (b) at time 𝑡 = 50 created with
simultaneous inputs. Input 𝐼 (𝑥, 𝑡) with 𝐴𝐼 𝑗 = 1, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1 was applied at time 𝑡 = 1. The kernel
𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.1. Threshold 𝜃 = 0.4
(dotted line), 𝐾 = 0.
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Figure 51: Solutions of the Amari model (a-d) and the two-field model (e-h) created with sequential inputs.
Inputs 𝐼 (𝑥, 𝑡) (gray lines) applied at times 𝑡1 = 1, 𝑡2 = 10 and 𝑡3 = 20. Snapshots taken at times: 𝑡 = 2
(a and e), 𝑡 = 11 (b and f), 𝑡 = 21 (c and g), 𝑡 = 50 (d and h). Remaining parameters of the inputs:
𝐴𝐼 𝑗 = 1, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1. Parameters of the kernel as in Fig. 50. Threshold 𝜃 = 0.4 (dotted line), 𝐾 = 0.
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8.3.1 Retro-cuing task

The representational quality of WM items is not only shaped by bottom-up input features as discussed

above but may be also modulated by top-down signals representing task demands [164]. A behavioral

paradigm that has attracted considerable interest over the last decade is retro-cuing (for an overview see

[145]). It shows that memory performance can be enhanced by a cue indicating the most relevant item

for the current task goals, even when the cue is applied long after the input array has been removed. A

simple application of prioritizing an item during WM maintenance is a task in which the spatial location

of two equally task-relevant movement targets has to be memorized, the information about the location to

visit first may vary and becomes available only later during the task. The exact mechanisms underlying the

retro-cueing benefit are still debated but recent modeling and experimental work suggests that top-down

signals generate neural contrast by enhancing the neural population representations of the cued item and

inhibiting activity of items irrelevant to current task goals [13, 65]. As illustrated in Figure 52, this view is

consistent with the dynamics of the integrator model when a second transient input is applied to one of

the two fields sites that had already developed a bump in response to a first input. In the context of the

mentioned application, it is interesting to note that a neural activation gradient is the hallmark of so-called

competitive cueing models of serial order [127]. In dynamic field implementations of this model class, a

competitive winner-take-all dynamics in a decision field, which receives the memory gradient as input, is

used to recall the stored serial order [58].
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Figure 52: Retro-cuing task in the Amari model (a and c) and in the two-field model (b and d). Bumps
are created with two inputs (grey lines) with 𝐴𝐼 𝑗 = 2 applied simultaneously at time 𝑡1 = 1 at positions
𝑥1 = −9 and 𝑥2 = 9. At a later time 𝑡3 = 20 an additional weak input with 𝐴𝐼3 = 0.5 is applied to one
of the memories at 𝑥1. (a and b) Temporal evolution of sites 𝑥1 (black lines) and 𝑥2 (red lines) in both
models. (c and d) Snapshots showing the final solutions at time 𝑡 = 50. Remaining parameters of the
inputs: 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1. The kernel 𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5
and 𝑔𝑚𝑒𝑥 = 0.1. Threshold 𝜃 = 0.4 (dotted line), 𝐾 = 0.

Recent findings in functional magnetic resonance imaging (fMRI) studies using a retro-cueing paradigm

have challenged the assumption that multiple items can be concurrently represented in an active state of

persistent neural activity [131, 146]. The findings have been interpreted as evidence that only the currently

most task-relevant item is maintained in an persistent state whereas the memories of currently unattended

items are stored in stimulus-selective patterns of short-term synaptic facilitation. Computational models

show that such latent “activity-silent” memory traces in the neural network can be restored into an ac-

tive state by retro-cues or other non-specific read-out signals [115, 150]. However, the findings of the

neurophysiological experiments are not conclusive since the applied data analysis technique might not be

sensitive enough to detect the signatures of weak sustained neural activity associated with unattended

items ([114], see [148] for neural evidence of multiple active WM representations). In fact, a recent model-

ing study based on the DNF framework convincingly showed that all key experimental findings of the fMRI

retro-cue study [146] could be reproduced relying entirely on sustained neural activity for WM represen-

tations [136]. The existence of subthreshold bumps in the two-field model supports the notion that also
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weak population activity can be sustained over behaviorally relevant timescales. Figure 53 simulates the

same retro-cue task like in Figure 52 but with weaker initial inputs and stronger cue. The field develops

again a two-bump but with a closer to threshold activation level. The main difference is that the population

representation of the un-cued item now appears to be suppressed below threshold. Figure 54 shows that

like in the computational studies of the activity-silent WM mechanism, the application of an unspecific

input signal that does not provide any spatial information is sufficient to restore the subthreshold memory

trace into a suprathreshold activity pattern.

Figure 53: Retro-cuing task in the Amari model (left column) and in the two-field model (right column).
Top row: Snapshots at time 𝑡 = 20 showing bumps created with two inputs with 𝐴𝐼 𝑗 = 0.75. Bottom row:
Snapshots at time 𝑡 = 50 showing solutions after applying an additional input with 𝐴𝐼3 = 2 to one of the
memories. Remaining parameters of the inputs: 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1. The kernel 𝑤 is given by (4.3) with
𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.2. Threshold 𝜃 = 0.4 (dotted line), 𝐾 = 0.
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Figure 54: Recovery of a “forgotten” memory (subthreshold bump) using unspecific input. (a) Snapshot
at time 𝑡 = 9. Solution created with input with 𝐴𝐼 𝑗 = 0.45 applied at time 𝑡 = 1 for duration 𝑑𝐼 𝑗 = 1. (b)
Snapshot at time 𝑡 = 11. A spatially constant input 𝐼 (𝑥) = 0.4 (grey line) is applied at time 𝑡 = 10 for
duration 𝑑𝐼 = 1. (c) Snapshot at time 𝑡 = 50. Parameters of the kernel as in Fig. 53. 𝐾 = 0, 𝜃 = 0.5.

8.3.2 Interacting bumps

An attractive feature of continuous attractor models is that they accurately explain errors in WM and other

behavioral tasks as a distance-dependent interaction between two or more neural population representa-

tions [2, 47, 84, 165]. DNF models of lateral-inhibition type connectivity predict that when two transient

inputs are presented in close proximity, the network dynamics exhibits an attraction effect [3, 93]. As

shown in Figure 55, the Amari model makes the strong prediction that there is no possibility to indepen-

dently store very similar points on a feature dimension since the two initially disjoint activity patterns will

merge. This attraction effect has been exploited for instance to model target selection of fast saccadic eye

movements that are known to land between two close targets (“averaging saccades” [165]). However, the

finding in a WM task of no performance impairment when items in memory are similar has challenged

the generality of the averaging hypothesis of simultaneously processed nearby feature values [106]. The

two-field model develops in response to the same transient inputs a brought activation pattern with two

peaks which is clearly distinguishable from a one-bump solution triggered by a single input. Interestingly, a

recent experiment investigating a possible neural substrate of saccadic averaging in the superior colliculus

(SC) reports that the simultaneous stimulation of two nearby SC sites evokes a single merged activation

pattern centered between the two sites [156]. Consistent with the prediction of the two-field model, the
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Figure 55: Merging bumps in the Amari model (left column) and in the two-field model (right column).
Bumps created with two inputs with 𝐴𝐼 𝑗 = 1.5, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1, applied at time 𝑡 = 1 at positions
𝑥𝑐1,2 = ±1.7. (a and b) Snapshots at time 𝑡 = 2 when input (gray lines) is still present. (c and d) Steady
states at time 𝑡 = 50. (e and f) Time courses of models’ activities. The kernel 𝑤 is given by (4.3) with
𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.1. Threshold 𝜃 = 0.4 (dotted line), 𝐾 = 0.

spread of activation appears to be significantly wider than the localized activity pattern induced by a single

stimulation. In WM applications, a downstream read-out mechanism might interpret the existence of the

two peaks and the relatively suppressed activity at the intermediate position as evidence for the storage

of two similar inputs [106]. An attraction effect still manifests since the peak distance is smaller than the

original input distance [2].

For larger input distances, both models show a repulsion effect for which direct neurophysiological and

behavioral evidence has been also described [2, 47]. The predicted magnitude of the repulsion effect

differs significantly however (Figure 56). The two localized inputs, which overlap to some extent, set the
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Figure 56: Repulsive bumps in the Amari model (left column) and in the two-field model (right column).
Bumps created with two inputs with 𝐴𝐼 𝑗 = 1.5, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1, applied at time 𝑡 = 1 at positions
𝑥𝑐1,2 = ±1.9. (a and b) Snapshots at time 𝑡 = 2 when input (gray lines) is still present. (c and d) Steady
states at time 𝑡 = 200. (e and f) Time courses of models’ activities. The kernel 𝑤 is given by (4.3) with
𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.1. Threshold 𝜃 = 0.4 (dotted line), 𝐾 = 0. The
solution in panel d is solution 𝑃4 shown in Fig. 37.

dynamics of the two-field model in the basin attraction of a two-bump solution with an inter-peak distance

larger than the input distance. In the Amari case, the attractor state represents two independent bumps

located at a further increased distance for which the mutual inhibitory interaction is constant. As shown

in Fig. 38, the magnitude of the repulsion effect depends on the spatial shape of the lateral inhibition

controlled by the parameter 𝜎𝑖𝑛ℎ.

A third type of distance-dependent interaction effect discussed in continuous attractor models is bump

annihilation [93, 162]. It may occur when a bump is closely flanked by two others. Figure 57 shows an
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example simulation of the Amari model where the summed lateral inhibition of the two flanking bumps

suppresses the input-induced suprathreshold activity at the intermediate position 𝑥 = 0, resulting in a

complete memory loss. Bump annihilation thus limits the number of items that can be simultaneously

stored in a field of a given size. The situation is different for the integrator model where a weaker but still

subthreshold bump stabilizes at 𝑥 = 0. With inputs closer to threshold, the intermediate bump becomes

suppressed below threshold but the activity still remains sustained. Recent experimental findings support

the notion of a neural encoding and maintenance of weak visual inputs into WM that do not reach the

threshold for conscious perception but may still affect goal-directed behavior [143]. Models of the capacity

limits of working memory are silent on this issue [150]. Future research might attempt to more directly

test the hypothesis that sustained subthreshold activity constitutes a neural substrate of conscious and

unconscious memory.

Figure 57: Bump annihilation in the Amari model. (a) Snapshot at time 𝑡 = 2 when input (gray line) is
still present. (b) Steady state at time 𝑡 = 100. (c) Time course of model activity. Bumps created with
three inputs with 𝐴𝐼 𝑗 = 1, 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1, applied at time 𝑡 = 1 at positions 𝑥1,2,3 ∈ {−5.5, 0, 5.5}. The
kernel 𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.2. Threshold
𝜃 = 0.4 (dotted line).
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Figure 58: Three-bump solutions of the two-field model. (a and b) Steady states at time 𝑡 = 100. (c and d)
Time courses of model activities. Bumps created with three inputs (gray lines) with 𝐴𝐼 𝑗 = 1 (left column)
and 𝐴𝐼 𝑗 = 1.5 (right column) applied at time 𝑡 = 1 at positions 𝑥1,2,3 ∈ {−5.5, 0, 5.5}. Remaining input
parameters 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1. The kernel𝑤 is given by (4.3) with𝐴𝑒𝑥 = 2,𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.25, 𝜎𝑖𝑛 = 2.5
and 𝑔𝑚𝑒𝑥 = 0.2. Threshold 𝜃 = 0.4 (dotted line), 𝐾 = 0.

8.3.3 Bump drift and bump interaction in the stochastic integrator model

To evaluate the impact of random fluctuations on the evolution and maintenance of input-driven bumps of

the two-field model, we use a stochastic version of the field equations with additive noise. It is given by

𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) + 𝑣 (x, 𝑡) +
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′ + 𝐼 (x, 𝑡) + 𝜖1/2d𝑊 (x, 𝑡), (8.6a)

𝜏𝑣
𝜕𝑣 (x, 𝑡)
𝜕𝑡

= −𝑣 (x, 𝑡) + 𝑢 (x, 𝑡) −
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′, (8.6b)

where d𝑊 (𝑥, 𝑡) is the increment of a spatially correlated Wiener process such that

〈d𝑊 (𝑥, 𝑡)〉 = 0, (8.7)

〈d𝑊 (𝑥, 𝑡)d𝑊 (𝑦, 𝑠)〉 = 𝐶 (𝑥 − 𝑦)𝛿 (𝑡 − 𝑠)d𝑡d𝑠, (8.8)

and 𝜖 � 1 is the noise amplitude.

Closely following the conceptually related bump attractor model of Carroll and colleagues [30], we choose
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a cosine spatial correlation function

𝐶 (𝑥) = 𝜋 cos(𝑥). (8.9)

The correlation function𝐶 (𝑥 −𝑦) can be related directly to a spatial filter F (𝑥 −𝑦). The term d𝑊 (𝑥, 𝑡)

can be defined by convolving a spatially white noise process dY(𝑥, 𝑡), satisfying 〈dY(𝑥, 𝑡)〉 = 0 and

〈dY(𝑥, 𝑡)dY(𝑦, 𝑠)〉 = 𝛿 (𝑥 − 𝑦)𝛿 (𝑡 − 𝑠)d𝑡d𝑠 with the filter F (𝑥 − 𝑦) such that

d𝑊 (𝑥, 𝑡) =
∫
Ω
F (𝑥 − 𝑦)dY(𝑦, 𝑡)d𝑦, (8.10)

where F (𝑥 − 𝑦) = 𝐶 (𝑥 − 𝑦). The noise term is added to the 𝑢 -equation only. This allows us to directly

compare the simulations of the two-field model with the behavior of the Amari model defined by the 𝑢 -

equation. Our simulations show that adding the same noise model also to the 𝑣 -equation does not change

the qualitative model predictions reported here.

8.3.3.1 Bump drift

Due to the neutral stability of a bump in a continuous attractor network, random noise may lead to a

drift of the bump in the absence of tuned external input [28, 30, 87]. Stochastic dynamic field models

thus predict a time-dependent loss of precision of WM representations. Direct neurophysiological and

behavioral evidence for this prediction comes from a recent study using a spatial WM paradigm in which

a monkey had to make saccadic eye movements to a remembered target. The results showed that the

recalled location deviates on a trial-by-trial basis precisely in the direction of the drift of the tuned population

activity at the end of the delay period [168].

Figure 59 shows for a single run of the stochastic integrator the bump drift at a fixed time (a) and in a

space-time plot (b). Larger drifts represent larger errors of the memorized location relative to the location

represented by the neural activity during input presentation at time 𝑡 = 0 at position 𝑥 = 0. Since

recall precision is known to be influenced by bottom-up sensory salience and top-down factors like retro-

cues, the bump amplitude representing the quality or strength of the item memory should affect the drift

rate. We tested this prediction in simulations of the stochastic model with inputs of varying strength (100

simulations for each strength). As shown in panel (c), the variance of the bump center position decreases

systematically with increasing bump amplitude. For the highest amplitude tested, the fluctuations over

time around the true input position are rather small. This dependence of the drift on input strength is

consistent with the results obtained with the DNF model proposed by Carroll and colleagues [30]. Since

there is no dependence of bump shape on input features in the Amari model, there is a unique drift pattern.
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For the present parameter setting, it is comparable with the pattern observed with input strength 𝐴𝐼 = 3

of the two-field model.

Figure 59: Bump diffusion in the stochastic two-field model. (a) Bump solution at time 𝑡 = 60. The initial
condition is a bump centered at 𝑥 = 0. (b) Space-time plot showing the bump drift. (c) Variance of the
bump’s position computed for 𝑁 = 100 numerical simulations of the model with different input strengths
𝐴𝐼 . Remaining input parameters 𝜎𝐼 𝑗 = 1, 𝑑𝐼 𝑗 = 1. The kernel𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1,
𝜎𝑒𝑥 = 1.5, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.3. Threshold 𝜃 = 0.25 (dotted line), 𝐾 = 0, 𝜖 = 0.005, 𝐿 = 𝜋 ,
d𝑥 = 0.01, d𝑡 = 0.01.

8.3.3.2 Bump interaction

As we have shown in section 8.3.2, recall precision in continuous attractor models also depends on

potential interference of nearbymemory traces. We have therefore also tested the behavior of the stochastic

integrator model with two simultaneously presented inputs. They were placed at a critical distance where

in the deterministic case a repulsion effect manifests and a small reduction of the input distance (2 d𝑥 ,

where d𝑥 is the numerical mesh size) causes attraction. Figure 60 (a) shows overlaid activity profiles of

an evolving two-bump solution taken at a fixed time in different model simulations. As can be clearly seen,

the additive noise causes a switching between either attraction or repulsion in different trials. Panel (b)

shows that the magnitude of the interference effect appears to be greatly reduced when stronger inputs are

applied. Panel (c) show this dependence on input strength/bump amplitude in a more quantitative manner

by plotting the variance of the inter-peak distance as a function of time. To allow a direct comparison, Figure
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61 depicts, for the same input distance, the activity pattern at a fixed time in two runs of the stochastic

Amari model. It develops either a single bump (a) or a two-bump with repulsion (b). The model simulations

show that the single bump may be the result of a suppressive interaction or a fast merging of the input-

induced activity patterns.

Figure 60: Bump attraction/repulsion due to noise in the two-field model. Sample profiles of 𝑢 -field of
the model at time 𝑡 = 30 created with two inputs with 𝐴𝐼 𝑗 = 1 (a) and 𝐴𝐼 𝑗 = 3 (b). The percentage of
“merged” solutions for inputs with amplitudes𝐴𝐼 ∈ {1, 2, 3} in 𝑁 = 500 trials was respectively 60%, 98%
and 100%. (c) Variance of the inter-peak distance as a function of time computed for 𝑁 = 500 numerical
simulations of the model for different input strengths 𝐴𝐼 . The inputs with amplitudes 𝐴𝐼 𝑗 = 1, 𝐴𝐼 𝑗 = 2,
𝐴𝐼 𝑗 = 3, are applied at positions 𝑥1,2 = ±2.25. Remaining parameters of the inputs are 𝜎𝐼 𝑗 = 1 and
𝑑𝐼 𝑗 = 1. The kernel 𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.5, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.1.
Threshold 𝜃 = 0.25 (dotted line), 𝐾 = 0, 𝜖 = 0.0025, 𝐿 = 3𝜋 , d𝑥 = 0.01, d𝑡 = 0.01.
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Figure 61: Bumpmerging (a) and repelling (b) in the Amari model due to noise. The inputs with amplitudes
𝐴1 = 1 are applied at positions 𝑥1,2 = ±2.25. Remaining parameters of the inputs are 𝜎𝐼 = 1 and 𝑑 = 1.
The kernel 𝑤 is given by (4.3) with 𝐴𝑒𝑥 = 2, 𝐴𝑖𝑛 = 1, 𝜎𝑒𝑥 = 1.5, 𝜎𝑖𝑛 = 2.5 and 𝑔𝑚𝑒𝑥 = 0.1. Threshold
𝜃 = 0.25 (dotted line), 𝜖 = 0.0025, 𝐿 = 3𝜋 , d𝑥 = 0.01, d𝑡 = 0.01.

8.3.4 Gated integrator model

The two-field model performs a continuous integration of input streams of any strength. This is a desirable

feature for decision making since also weak evidence may bias decision processes involving multiple

alternatives. One potential problem with the perfect integrator mechanism is that the pure accumulation

of noise at field sites without specific input may in principle lead to the creation of bumps. Other neuro-

inspired integrator models solve this problem by implementing circuit-based gating mechanism that control

the minimum level of evidence entering the accumulation process [27, 92]. We propose a simple extension

of the two-field model in which the coupling between the two layers is gated by a threshold function 𝑔(𝑢).

A step function with threshold 𝜅 ≤ 𝜃 is used for simplicity. The model reads

𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) + 𝑣 (x, 𝑡)𝑔(𝑢 (x, 𝑡) −𝜅) +
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′ + 𝐼 (x, 𝑡) + 𝜖1/2d𝑊 (x, 𝑡),

(8.11a)

𝜕𝑣 (x, 𝑡)
𝜕𝑡

= −𝑣 (x, 𝑡) + 𝑢 (x, 𝑡)𝑔(𝑢 (x, 𝑡) − 𝜅) −
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′. (8.11b)

Functionally, the state-dependent gating mechanism delays the perfect integration of evidence until a target

location is selected by an initial input of strength 𝐴𝐼 > 𝜅, rendering a bump creation by accumulated

(weak) noise unlikely. Figure 62 (left column) compares the pattern formation in response to an input

at 𝑥 = 0 in the stochastic model without (a and b) and with gating mechanism using different gating

thresholds 𝜅 (c,d,e and f). Without gating mechanism, in addition to the input-driven bump at 𝑥 = 0

various noise-induced bumps at other locations develop.
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Figure 62: Simulations of the two-field model (8.11) with different values of threshold 𝜅 and the Mexican
hat function given by (4.3) with 𝐴𝑒𝑥 = 3, 𝐴𝑖𝑛 = 1.5, 𝜎𝑒𝑥 = 1.4, 𝜎𝑖𝑛 = 3 and 𝑔𝑚𝑒𝑥 = 0.2, 𝜃 = 0.75,
𝐾 = 1. Spatial fluctuations as given by a cosine-correlated noise with 𝜖 = 0.005. Bumps created with
input with 𝐴𝐼 𝑗 = 2, 𝜎𝐼 𝑗 = 1.5, 𝑑𝐼 𝑗 = 1, applied at 𝑥 = 0. (a,b) no gating; (c,d) 𝜅 = 𝜃 = 0.75; (e,f)
𝜅 = 0.15.

The impact on noise integration can be seen when comparing the sum of 𝑢 (𝑥) and 𝑣 (𝑥), representing

the total of accumulated external input and noise. For the gating case, the integral represents the bell-

shaped input slightly corrupted by noise and small random fluctuations at other field sites whereas for the

case without gating, the integral represents a clearly suprathreshold multi-bump pattern. It is important

to notice that the gating mechanisms do not destroy the existence of subthreshold bumps since for sites

𝑥 with 𝑢 (𝑥) > 𝜅 a continuous integration of weak inputs is still supported.

The gating mechanism is also important for resetting stimulus-selective persistent activity to a homoge-

neous resting state. In WM applications of continuous attractor networks, it is typically assumed that a

switch between a bump attractor and a stable resting state can be achieved by applying a transient in-

hibitory input to all neurons [28]. Figure 63 illustrates this “forgetting” mechanism in a model simulation

103



CHAPTER 8. WORKING MEMORY APPLICATION

without noise. The neural integrator first develops a bump in response to a localized excitatory input which

is followed by a strong decrease in activation when at time 𝑡 = 21 the homogeneous inhibition is applied

to the 𝑢 -field. Functionally, the two fields become decoupled since 𝑔(𝑢) < 𝜅,∀𝑥 , and the subthreshold

activity in both layers converges to the homogeneous resting state, 𝑢 = 𝑣 = 0 as predicted by the Amari

model [3].

Figure 63: Forgetting mechanism. A bump is first triggered by localized input applied at 𝑡 = 1 (a and
b). This is followed by a decay to resting state (c and d) when at time 𝑡 = 21 a homogeneous inhibitory
input is applied to the 𝑢 -field of the two-field model (8.11). The connectivity function is given by (4.3)
with 𝐴𝑒𝑥 = 3, 𝐴𝑖𝑛 = 1.5, 𝜎𝑒𝑥 = 1.4, 𝜎𝑖𝑛 = 3 and 𝑔𝑚𝑒𝑥 = 0.2. The localized input is defined by
𝐴𝐼 𝑗 = 1, 𝜎𝐼 𝑗 = 1.5, 𝑑𝐼 𝑗 = 1 and the homogeneous inhibition by 𝐴 = −1.5 and 𝑑𝐼 𝑗 = 1. Thresholds
𝜅 = 𝜃 = 0.5 (dotted line), 𝐾 = 1.

8.4 Conclusion

In this chapter, we have presented a bump attractor model which is able to sustain localized activity patterns

evoked by external inputs which differ in shape and amplitude. Themodel simulations demonstrate that the

network dynamics not only supports the encoding of a single input value in the bump position but also the

storage of additional stimulus attributes like uncertainty, intensity or duration in the bump shape. Moreover,

the model works as a robust neural integrator since the bump amplitude faithfully reflects the accumulation
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of input signals over time. This contrasts with the behavior of most attractor networks applied in working

memory and decision making tasks in which the stable state corresponds to a stereotyped pattern of

activity exclusively determined by the recurrent interactions within the network. The input dependence

is achieved by combining a lateral-inhibition type network connectivity with local inhibitory and excitatory

feedback mechanisms that are able to stabilize input-induced changes of the population activity at any

level.

Using an identical parameter set allowed us to directly compare the performance of the two-field

model with the classical Amari model. The network with the balanced local feedback exhibits several

distinct features. First, two stable regions of excitation may exist at a distance where a gradient in the

lateral inhibition profile predicts a merging or drifting of the bumps in the Amari model. Moreover, the

lateral feedback excitation of the two-field model facilitates in general the formation of memory bumps.

This is particularly evident in a sequential stimulus protocol in which lateral inhibition in the Amari model

may prevent the encoding of an input in a stable activity pattern. This is true even for the case of a spatially

uniform lateral inhibition for which a multi-bump solution exists. The two-field model thus predicts a higher

working memory capacity without the need to refer to additional processing mechanism like top-down

excitation [44] or a stimulus-selective synaptic facilitation [115]. Second, the activation pattern induced

by two nearby inputs does not merge completely into in a single bump at an intermediate position but

displays a wide plateau in its profile. This result is consistent with the prediction of biophysically realistic

bump attractor networks [162] and has been described in electrophysiological stimulation studies [156].

The higher uncertainty expressed by the wider activity distribution could be used by a downstream read-out

system in cue integration and decision making tasks. Third, the two-field model supports the existence

of stable subthreshold activity patterns. In the context of the retro-cuing paradigm, we have argued that

such patterns might represent less-salient items that become suppressed below threshold by means of

lateral inhibition from bumps representing cued items. The experimental observation that neural memory

representations often degrade to a large extent during the delay period has been taken as evidence for an

active-silent state of working memory encoded in synaptic changes [115]. The model simulations however

suggest that postulating such a latent memory state might not be necessary at least for the retro-cuing

task [136]. The information represented by weak sustained activity is not lost but can be restored with a

spatially unspecific cue.

Unlike in bistable attractor models of Amari type, the baseline activity of the neural integrator is not a

stable state. A forgetting mechanism can thus not be implemented by simply applying a sufficiently strong
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inhibitory input that destabilizes existing bumps. For working memory applications, we have proposed a

simple gating mechanism for the local feedback which restores the stable resting state of the Amari model

without destroying the existence of subthreshold bump solutions.

The possibility to represent stimulus attributes in the bump shape allows us to make predictions about

the impact of for instance input strength (or contrast) on working memory performance. Simulations of

the stochastic version of the two-field model reveal that the noise-induced drift of a single bump in the

continuous attractor network decreases with increasing bump amplitude associated with stronger inputs.

Larger bump amplitudes also greatly reduce the interaction effects of two input-induced bumps at a critical

distance which can be described as repulsion or attraction when considering the relative peak positions.
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9DNF model for measuring and reproducing

time intervals1

9.1 Introduction

In this chapter, we use the model of a robust neural integrator introduced in Chapter 4 to investigate

in numerical simulations neuro-inspired processing mechanism that can be used to endow robots with

the capacity to measure and produce time intervals in a highly flexible manner. We review recent neuro-

physiological evidence suggesting that the neural computational principles supporting this capacity may be

understood from a dynamical systems perspective: Inputs and initial conditions determine how a recurrent

neural network evolves from a “resting state” to a state triggering the action. During measurement, the

temporal accumulation of input leads to the evolution of a self-stabilized bump whose amplitude reflects

elapsed time. During production, the stored information is used to reproduce on a trial-by-trial basis the

time interval either by adjusting input strength or initial condition of the integrator. We discuss the impact

of the results on our goal to endow autonomous robots with a human-like temporal cognition capacity for

natural human-robot interactions.

9.2 Interval reproduction task

Our successful interaction with an inherently dynamic environment requires the capacity to perceive

elapsed time and to produce highly timed motor responses. Humans and other animals are able to

generate time intervals in the range of tens of milliseconds to several seconds in anticipation of sensory

events (e.g., a color change of a traffic light) without a clock or any external device [64, 110]. More-

over, the temporal control of behavior often shows a striking flexibility [125], allowing the adjustment of

movement initiation time based on a single or very few observations of environmental changes (e.g. a

prolonged amber phase). How the nervous system manages to flexibly process temporal information in

1The content of this chapter is based on [172].
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the service of behavioral goals is currently an active research field (for a recent review see [119]). A recent

experiment in which monkeys were trained to measure different sample intervals (demarcated by two time

markers) and immediately afterward reproduce it by a proactive saccade to a predefined target, reveals

new insights into the neural processing mechanisms [83]. We show the experimental setup for the interval

reproduction task from [83] in Figure 64. The main finding during the production epoch is a monotonic

Figure 64: (a) Experimental setup for the “Ready, Set, Go” (RSG) task. In the measurement epoch (ME),
monkeys measured a sample interval, marked by two cues: “Ready” and “Set”. In the production epoch
(PE), monkeys had to reproduce the sample interval by making a saccadic eye movement to a visual
target (there was no explicit “Go” signal). Sample intervals were drawn randomly from a discrete uniform
distribution with values ranging between 529 and 1,059 ms (b). From [83], Figure 1A-B.

increase of neural population activity to a fixed threshold value associated with saccade onset. Such a

ramp-to-threshold dynamics has been described previously in a wide range of brain areas during timing

tasks [119]. The interesting novelty of this study is the observation that the population activity at the end

of the measuring epoch (ME) predicts on a trial-by-trial basis the buildup rate during the production epoch

(PE) and consequently anticipates the time of the upcoming motor response. Longer sample intervals

are associated with higher firing rates at the end of ME and shallower buildup rates during PE. Averaged

neural responses during both ME and PE epochs are shown in Figure 65.

Most computational models of ramping activity explain the accumulation of temporal evidence as a
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result of a network mechanism in which positive and negative feedback is mediated by recurrent connec-

tions between neurons [126, 142]. However, well known problems with these integrator models are the

requirement to fine tune network connections and the lack of robustness to perturbations [105]. Moreover,

changes in the network structure (e.g., through Hebbian synaptic modification) are assumed to tune the

slope of ramping activity to a new sample interval [126]. Here we use a novel model of a robust neural

integrator [170] based on the theoretical framework of dynamic neural fields [138] to test a dynamical

systems view on flexible measurement and reproduction of time intervals [125]. The basic assumption

is that temporal flexibility can be readily understood in terms of inputs and initial conditions that control

the speed with which the neural population activity in the recurrent network evolves. Our primary goal is

not to explain in detail the experimental data in [83], but to investigate in numerical model simulations

neuro-inspired processing mechanism that may be used in the future to endow autonomous robots with a

sophisticated action timing capacity for more natural human-robot interactions [19, 49].

Figure 65: Plots of the population-average neural responses during the RSG task. Sample intervals are
indicated by colors (see legend). (a) Response averages aligned to the time of “Ready”. Each trace ter-
minates at the time of the corresponding “Set” (filled circles). Activity declines initially and then increases
monotonically with elapsed time. (b) Response averages aligned to the time of “Set”. (c) Response av-
erages aligned to the time of saccade. Trials with shallower buildup rate resulted in longer production
intervals, and conversely, trials with steeper buildup rate were followed by shorter production intervals.
From [83], Figure 2C-E.
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9.3 The model

In the applications, neural fields are typically spanned over continuous dimensions such as direction,

position or color. Following the experimental setup in [83], we assume for the present study that the

neurons in the field represent the target of the saccadic eye movement triggered at the end of PE which is

identified by movement direction. The presentation of the target input triggers the evolution of a localized

activation pattern or bump encoding the specific parameter value. To represent not only the nature of the

input but also the accumulation of temporal evidence we have to assume that the recurrent interactions

between the neurons in the field are able to stabilize a bump solution with a continuum of amplitudes. To

ensure this we employ a novel field model that we introduced in Chapter 4

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

= −𝑢 (𝑥, 𝑡) + 𝑣 (𝑥, 𝑡) +
∫
Ω
𝑤 ( |𝑥 − 𝑦 |) 𝑓 (𝑢 (𝑦, 𝑡) − 𝜃 )d𝑦 + 𝐼 (𝑥, 𝑡) + 𝜖1/2d𝑊 (𝑥, 𝑡), (9.1a)

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= −𝑣 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) −
∫
Ω
𝑤 ( |𝑥 − 𝑦 |) 𝑓 (𝑢 (𝑦, 𝑡) − 𝜃 )d𝑦, (9.1b)

posed on a one-dimensional domain Ω ⊂ ℝ. The firing rate function 𝑓 (𝑢) is taken here as a Heaviside

step function (4.6) with threshold 𝜃 . The function 𝐼 (𝑥, 𝑡) represents the time varying external input to field

𝑢. The additive noise term d𝑊 (𝑥, 𝑡) describes the increment of a spatially dependent Wiener process

with noise amplitude 𝜖 � 1. It allows us, in principle, to test predictions about the variability of time

measurements, an interesting issue that goes beyond the scope of this chapter.

The lateral inhibition type connectivity kernel has a “Mexican-hat” shape given by (4.3). The parameter

values used throughout this chapter are 𝐴𝑒𝑥 = 3, 𝐴𝑖𝑛 = 1.5, 𝜎𝑒𝑥 = 1, 𝜎𝑖𝑛 = 3, 𝑔𝑚𝑒𝑥 = 0.5.

We apply the same coupling function to the 𝑣 -field with a negative sign. The shape of the distance-

dependent synaptic strengths thus represents an inverted Mexican-hat with inhibition dominating at shorter

and excitation at longer distances.

Numerical simulations of the model were done in Julia [15] using a forward Euler method with time step

Δ𝑡 = 0.001 and spatial step Δ𝑥 = 0.005, on a finite domain Ω with length 𝐿 = 60. To compute the

spatial convolution of𝑤 and 𝑓 we employ a fast Fourier transform (FFT), using Julia’s package FFTW with

functions fft and ifft to perform the Fourier transform and the inverse Fourier transform, respectively.
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9.4 Simulation results

In the following numerical examples, we consider a target input given by the Gaussian function

𝐼 (𝑥) = 𝐴𝐼𝑒 (−(𝑥−𝑥𝑐 )
2/2𝜎2𝐼 ), (9.2)

centered at position 𝑥𝑐 = 0, with standard deviation 𝜎𝐼 = 2. The input strength, 𝐴𝐼 , differs for the

time interval measurement and the time interval reproduction epochs of the experiment (see below). For

simplicity, we assume that the interval to measure is defined by the duration of the external input and not by

two additional time markers like in the experiments. We leave the interesting issue of potential differences

in subjective time measurements with “filled” intervals as opposed to “unfilled” intervals demarcated by

time markers for future studies [161]. The temporal integration process thus starts from a homogeneous

activity baseline when at time 𝑡 = 0 the suprathreshold target input is presented. Following [83], we use

for the numerical tests time intervals in the range of 500 to 1000 ms.

For the reproduction epoch we distinguish two situations. 1) Like for the measurement epoch, the temporal

accumulation process starts from a homogeneous initial condition with the presentation of the target input.

The input strength is inversely proportional to the bump amplitude reached during ME. 2) The evolution

of the population activity starts without external input from a non-homogeneous initial condition. The

pre-activation of neurons representing the target direction is inversely proportional to the bump amplitude

reached during ME.

9.4.1 Measuring time intervals

The following simulations illustrate how the neural trajectory in the 𝑢 -field evolves in response to the

localized external input specifying the target direction. Fig. 66 depicts three examples of steady state

solutions that are the result of the temporal input integration over different time intervals. The shape

of the self-stabilized bumps reflects the fact that a longer accumulation time results in a higher bump

amplitude. A closer inspection of the duration-height dependency using more time intervals reveals that

the relationship is approximately linear (Fig. 67).
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Figure 66: Example of three steady state solutions of the 𝑢 -field of (9.1) resulting from applying three
sample intervals of durations 𝑑𝑠 𝑗 ∈ {500, 750, 1000}, respectively. The amplitude of the external input
given by (9.2) is 𝐴𝐼 = 1.75, the threshold for the Heaviside function 𝑓 (𝑢) is 𝜃 = 0.25.

Figure 67: (a) Time courses of activity in the 𝑢 -field during the interval measuring epoch. (b) Bump
amplitude at the end of the measuring epoch as a function of sample interval length.

9.4.2 Reproducing time intervals - varying inputs

For the reproduction epoch we apply the same external input, 𝐼 (𝑥, 𝑡), like for the time interval measure-

ment but chose in accordance with the qualitative experimental findings in [83] the input strength in de-

pendence of the bump amplitude reached in ME. The following relation is used for the model simulations:

𝐴𝐼 =
1

ln(𝑢𝑚𝑎𝑥 )
, (9.3)

where 𝑢𝑚𝑎𝑥 is maximum of the steady state solution in the 𝑢 -field in the preceding measurement epoch.

Fig. 68 shows the input amplitudes, 𝐴𝐼 , for the range of measured intervals. The application of the
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suprathreshold input triggers in all cases the evolution of a bump solution. Fig. 69 compares the evolu-

tion of population activity for all tested intervals. As can be clearly seen when comparing the slopes of

the curves, input strength controls the time course of the neural trajectories. Since the strength of the

input is inversely proportional (on a logarithmic scale) to interval length, population activity resulting from

stronger inputs will reach the fixed read-out threshold, ℎ𝑅 = 2, earlier, producing shorter time intervals for

movement initiation. Conversely, localized activity integrating weaker inputs reach this threshold later in

time, resulting in longer production intervals. After reaching the threshold, ℎ𝑅 , the activity in both fields is

reset to the initial resting state. The production interval is measured as the interval between the onset of

the input 𝐼 (𝑥, 𝑡) at 𝑡 = 0 and the time when the 𝑢 -activity reaches the threshold.

Fig. 70 compares directly the values of measured and produced intervals. For the tested range, the results

reveal a very good match with a slight overestimation of the shortest intervals and a slight underestimation

of the longest intervals (see also Table 2).

Figure 68: (a) Strength of the input during the interval production epoch as a function of sample interval
length. (b) Strength of the initial condition during the interval production epoch as a function of sample
interval length.

9.4.3 Reproducing time intervals - varying initial conditions

To test the hypothesis that an adequate choice of initial condition for the population dynamics of the

reproduction epoch may be sufficient to account for a flexible reproduction of measured time intervals, we

proceed as follows. The numerical simulations do not start from a homogeneous resting state. Instead,

the population centered at position 𝑥𝑐 representing the planned movement direction appears to be pre-

activated at time 𝑡 = 0. The amplitude of the preshape depends on the outcome of the preceding
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Figure 69: Time courses of activity in the 𝑢 -field during the interval production epoch. Threshold reaching
time is determined by the input strength.

Figure 70: Production intervals as a function of sample intervals. Goodness of fit 𝑅2 = 0.99.

measuring epoch in the following manner:

𝑢 (𝑥, 0) = 1

𝛼𝑒 (𝑢𝑚𝑎𝑥 )
𝑒 (−(𝑥−𝑥𝑐 )2/8), 𝑣 (𝑥, 0) = 𝐾 − 𝑢 (𝑥, 0), (9.4)

where 𝑢𝑚𝑎𝑥 is maximum activity of the steady state solution in the 𝑢 -layer reached during ME, and 𝛼 is a

constant scaling factor for the preshape amplitude which decreases with increasing 𝑢𝑚𝑎𝑥 . The role of the

constant 𝐾 can be understood by noting that the subthreshold population dynamics (𝑓 (𝑢) = 0) has the

equilibrium solution 𝑢 (𝑥) = 𝑣 (𝑥). By choosing 𝐾 > 2ℎ one can ensure that the dynamics of the coupled

populations will reach the threshold ℎ necessary to drive the evolution of a bump. For the numerical tests

we use 𝐾 = 0.5, ℎ = 0.22 and 𝛼 = 1.25. The initial condition may be set for instance by a transient
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sample interval 500 550 600 650 700 750 800 850 900 950 1000
produced interval
(external inputs)

516 579 626 679 732 777 820 858 907 953 986

produced interval
(initial conditions)

518 604 676 741 793 820 862 893 923 950 972

Table 2: Values (in milliseconds) of sample and produced intervals.

input controlling the bell-shaped pre-activation and by a transient “go” signal (e.g., the second flash in

the monkey experiment) controlling 𝐾 and consequently the onset of the temporal evolution at 𝑡 = 0.

Figure 71 shows the time course of activity of the 𝑢 -field for all measured intervals. The initial preshape

amplitude predicts motor timing. Stronger preshapes are associated with shorter production intervals.

Since no external input is applied, the neural trajectory is identical for all intervals once the threshold

for the bump formation is reached. The difference in timing is thus completely explained by the speed

with which the subthreshold trajectory reaches threshold, which in turn is determined by the activation

gap between 𝑢 (𝑥, 0) and ℎ. Figure 72 directly compares the measured and produced intervals. The

coefficient of determination, 𝑅2 = 0.95, indicates that the numerical results fit still quite well the model

of a perfect measuring/production match, albeit with larger errors compared to the model with external

input (see also Table 2).

Figure 71: Time courses of activity in the 𝑢 -field during the interval production epoch. The instants of
reaching the read-out threshold, ℎ𝑅 = 0.6, vary systematically in dependence of the initial condition of the
field dynamics.
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Figure 72: Production intervals as a function of sample intervals. Goodness of fit 𝑅2 = 0.95.

9.5 Application to robotics

The results of our simulation study support the notion that neural computational principles of flexible tim-

ing may be captured by a dynamical systems perspective. Closely balanced excitation and inhibition in a

spatially structured neural network explain the temporal integration and maintenance of external inputs.

The information about elapsed time stored in the bump amplitude can be used on a trial-by-trial basis to

reproduce the time interval either by adjusting input strength or initial condition of the neural integrator.

This affects the speed or the onset of the neural trajectory towards the bump attractor, respectively. The

field model shares with other recurrent network models the assumption that the neural mechanisms for

timing are closely integrated with the processing of other stimulus attributes like for instance movement

direction [112, 119].

There are several open issues with the current model implementation. First of all, since the input is

continuously integrated, not only its duration but also its strength will influence the bump amplitude and

consequently the interval measurement. The “strength normalization” issue can be solved by not inte-

grating the input directly but instead a bump from a connected neural field which is triggered and deleted

by transient signals (e.g., input onset and offset). In classical neural field models, the shape of such a

memory bump is exclusively determined by the recurrent interactions within the network [3, 48]. More-

over, recurrent interactions are known to increase the signal-to-noise ratio, making the integration process

more robust compared to the direct integration of a potentially weak and noisy input. Interestingly, the

usage of a memory bump in the integration process might also explain the finding that “filled” intervals are

typically judged as lasting longer than “unfilled” intervals of the same duration [161]. Since a stationary
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bump solution of the field equation with a lasting external input has a slightly larger amplitude compared

to a bump triggered by a brief, transient input, the temporal integration in the “filled” condition predicts a

larger bump amplitude in the measurement field compared to the “unfilled” condition.

A second issue concerns the scaling of intervals to values outside the measured range by instruction or

symbolic cues [157]. The effective bump height during reproduction should reflect this additional infor-

mation. We have recently proposed and tested a simple and effective adaptation rule for the bump height

based on the comparison between the produced time course of population activity and the neural trajec-

tory of a reference or synchronization signal indicating the expected timing [171].

Our ultimate application goal for the model is to advance towards a human-like temporal cognition capac-

ity for autonomous robots [113]. We are planning to test the model as part of an existing dynamic field

control architecture for natural human-robot cooperation [49]. The continuous real-time synchronization

of decision and actions with a human partner requires flexible perception and production of time intervals,

fully integrated in other cognitive processes without reference to external computer clocks. A concrete

example of human-robot collaboration is an assembly paradigm in which a robot assistant hands over a

series of objects to the human worker. Findings in recent experiments directly comparing human-human

and human-robot handovers stress the importance of temporal aspects of the robot’s actions [66, 90].

Being able to adapt to the user by minimizing the human’s waiting time is considered crucial for user ac-

ceptance and satisfaction. Figure 73 presents a sketch of a possible model implementation in the context

of a cooperative object transfer task. The robot has first to measure the duration of individual assembly

steps. This could be achieved for instance in a learning by demonstration paradigm in which the robot

watches a human teacher executing the assembly work (assuming that all objects are within reach, [144]).

Time measurement starts when the robot observes the teacher reaching for a specific object and stops

when he/she reaches for the next one. The input to the measurement field is thus a self-stabilized bump in

a memory field representing the object currently manipulated. During joint task execution, the robot uses

the temporal information stored in the bump amplitude to prepare the complementary action of holding

out the next object for the user. The temporal integration of the object memory bump with an amplitude

given by equation 9.3 causes ramping activity in the time reproduction field. Reaching the pre-defined

activation threshold at the end of the interval to be estimated is associated with the initiation of the object

transport to the exchange position. Due to motor delays, the object exchange may still not be in perfect

synchrony. A perceived temporal mismatch between the expected and the realized event timing (e.g.,

user picking object from robot hand) can be used to adapt in a single trial the initial resting state in the
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Figure 73: Object handover task. (a) The robot has to measure the time interval, [𝑡1, 𝑡2], between two
consecutive graspings of object𝑂1 and object𝑂2. (b) Visual input from the camera system, characterizing
the first object (e.g., object color), drives the evolution of a bump in an object memory field. (c) Time course
of the temporal integration of the object memory in the measurement field during the interval [𝑡1, 𝑡2]. (d)
The measured duration is recalled in the reproduction field by integrating the memory bump with an
amplitude defined by the measurement bump in (c). Reaching the readout threshold is associated with
the initiation of the object transfer to the exchange position.

reproduction field in order to compensate systematic motor delays [171]. We are currently studying how

the choice of the time scale of the robust neural integrator (𝜏 = 1 in the present study) affects precision

timing for time intervals that are relevant for human-robot interactions.
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9.6 Conclusion

We presented an application of the novel neural field model introduced in Chapter 4 to robustly measure

and produce time intervals. Our results are in line with the recent evidence suggesting that neural com-

putational principles of flexible timing may be captured by a dynamical systems perspective. The model

may be incorporated as a part of larger DNF control architecture for natural human-robot collaboration to

advance toward a human-like temporal cognition capacity for robots.
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10DNF model for planning of a robotics

assistant1

10.1 Introduction

This chapter presents an application of the two-field model as a part of DNF architecture for sequence

learning and planning of a robotics assistant. The two-field model is used to perform temporal integration

of external and internal inputs of any strength. The accumulation of inputs in persistent activity of neural

populations during sequence learning leads to formation of an activation gradient encoding the sequential

order of memorized events. This information is then recalled from the memory in the sequence planning

phase. The work presented in this chapter complements our earlier research on a DNF architecture

for natural human-robot cooperation. The main advantage of using the two-field model is the robust

representation of accumulated evidence in localized activation patterns, without a need to rely on additional

processing mechanisms.

As a first robotics experiment we chose a pipe assembly task in which a robot first watches a human

assistant grasping a series of pipes to hand them over to an operator performing the assembly steps. The

goal for the robot is to learn the serial order of handovers to subsequently substitute the human assistant

in the joint task. Order learning is guided by the information provided by the vision system about the

color and the length of each pipe. During observation, the neural integrator of a memory field establishes

a gradient of persistent activations over distinct neural subpopulations tuned to a specific color-length

combination. The integration time from input onset to the end of the assembly sequence defines the

level of persistent activity. Consequently, the neural representation of the first pipe to be grasped has

the highest activation whereas the representation of the last pipe has the lowest. During joint execution,

the competitive neurodynamics of a decision field, which receives the stable activation gradient as input,

drives the sequential initiation of proactive handovers of all pipes in the correct order.

1The content of this chapter is based on [174].
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10.2 Experimental setup

For the experiment, we used the collaborative robot Sawyer designed by the company “Rethink Robotics”.

It is featured by a 7 degrees of freedom robot arm with 1.26 meters reach that operates in work cells

defined for humans. The “head” mounted on top consists of a LCD display and a camera system. An

additional camera system is mounted on the arm. We used the head camera to provide the information

about length and color at the moment when the “giver” has transported the pipe to the exchange position

and the “receiver” touches it. During joint task execution, the reach-grasp-transport trajectory of the robot

arm to a pre-defined exchange position is generated using the “HUMP” planner developed by our group

[140]. It guarantees human-like features of the robot arm movements.

10.3 DNF model for sequence learning and planning

10.3.1 Model equations

We now briefly describe the two neural field models used to build the DNF architectures discussed in this

chapter and later in Chapter 11.

We employ the Amari model

𝜏
𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) +
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′ − ℎ + 𝐼 (x, 𝑡) + 𝜖1/2d𝑊 (x, 𝑡), (10.1)

and the two-field model

𝜏
𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) + 𝑣 (x, 𝑡) +
∫
Ω
𝑤𝑚𝑒𝑥 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′

+ 𝐼 (x, 𝑡) + 𝜖1/2d𝑊 (x, 𝑡),
(10.2a)

𝜏
𝜕𝑣 (x, 𝑡)
𝜕𝑡

= −𝑣 (x, 𝑡) + 𝑢 (x, 𝑡) −
∫
Ω
𝑤𝑚𝑒𝑥 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′. (10.2b)

In this chapter, spatial domain Ω is a subset of ℝ𝑑 with 𝑑 = 1 and 𝑑 = 2. The parameter 𝜏 > 0 defines

the time scale, 𝐼 (x, 𝑡) represents a time-dependent, localized input centered at site x, and ℎ > 0 defines

the stable resting state of a field without external input. Term 𝑤 (x, x′) is the synaptic weight distribution

which determines the connection strength between interacting neurons at positions x and x′.

We use three different weight distributions 𝑤 : a Gaussian function minus a constant given by (4.2), a

Mexican hat function given by (4.3), and an oscillatory connectivity function given by (4.4). Firing rate
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function 𝑓 is the Heaviside function defined in (4.6) with the threshold chosen as 𝜃 = 0 [3]. Finally,

the additive noise term d𝑊 (x, 𝑡) describes the increment of a spatially dependent Wiener process with

amplitude 𝜖 � 1. We use the noise term to break the symmetry in decision processes in which different

choices get equal or nearly equal support from input sources. Model parameters, initial conditions and

implementation details are given in the Appendix B.

10.3.2 Model architecture

Figure 74 presents a sketch of the DNF model implemented as part of the control architecture of the robot

Sawyer. It consists of several interconnected two-dimensional fields spanned over the input dimensions

(𝑥,𝑦) = (length, color).

The model generalizes an earlier one-dimensional sequence learning model which we have applied to teach

a robot by demonstration a color-coded musical sequence [57]. From a computational perspective, the

important innovation is that the neural integrator simplifies the processing and storage of serial information.

No additional neural mechanisms (e.g., a threshold accommodation dynamics used in [57]) have to be

applied to account for stable bumps with varying amplitudes.

The perceptual field𝑢𝑝𝑒𝑟 , governed by the Amari equation (10.1) with kernel (4.2), receives a two-dimensional

Gaussian input representing the length-color combination of a specific pipe that the vision system detects

at the exchange position. The neural dynamics in the sequence memory layer is governed by the coupled

neural integrator equations, 𝑢𝑚 and 𝑣𝑚, given by (10.2) with kernel (4.3). The 𝑢𝑚 -field receives two types

of excitatory input (solid lines):

𝐼 (𝑥,𝑦, 𝑡) = 𝑢𝑝𝑒𝑟 (𝑥,𝑦, 𝑡) 𝑓 (𝑢𝑝𝑒𝑟 (𝑥,𝑦, 𝑡)) + 𝐼𝑐 𝑓 (𝑢𝑚 (𝑥,𝑦, 𝑡)) . (10.3)

The first term on the right side describes the input from the perceptual field at position (𝑥,𝑦) where

sensory information has triggered the evolution of a suprathreshold activity pattern. Through inhibitory

feedback connections (dashed line), the bump in 𝑢𝑝𝑒𝑟 becomes destabilized (and the input disappears)

once a memory bump in (𝑢𝑚, 𝑣𝑚) has been established at the corresponding position. The second

term describes a constant input 𝐼𝑐 to all neurons in 𝑢𝑚, which is defined by the summed suprathreshold

activation in the “sequence onset” field 𝑢𝑜𝑛:

𝐼𝑐 = 𝜅
∫

{𝑥 :𝑢𝑜𝑛 (𝑥)≥0}

𝑓 (𝑢𝑜𝑛 (𝑥))d𝑥, (10.4)
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Figure 74: Schematic view of the DNF model with several interconnected fields implementing sequence
learning and sequence planning.

where 𝜅 > 0 defines the input strength.

A bump in this one-dimensional field represents the memory of an additional color cue that signals to the

robot the onset of the sequence demonstration. Due to the multiplicative gating by the suprathreshold
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Figure 75: Perceptual input to the 𝑢𝑜𝑛 field (a) and the 𝑢𝑝𝑒𝑟 field (b) during sequence learning phase.

activity, 𝑓 (𝑢𝑚), the integration of the constant input, 𝐼𝑐 , manifests only at sites where the transient input

from𝑢𝑝𝑒𝑟 has already driven the evolution of a bump. As a consequence, the earlier a certain pipe has been

manipulated during demonstration, the higher is its memory bump. An activation gradient established in

(𝑢𝑚, 𝑣𝑚) thus encodes serial order. Gradient-based modeling approaches to serial order are known in the

literature as competitive cuing or ordinal models [127]. The integration of the constant input stops when

a second color cue (not shown), signaling the end of the sequence demonstration, destabilizes the bump

in 𝑢𝑜𝑛.

During joint execution of the assembly task, the choice which pipe to manipulate next is made in the

decision field𝑢𝑑 governed by equation (10.1) with kernel (4.2). It receives the stationary activation gradient

of 𝑢𝑚 as subthreshold, excitatory input:

𝐼 (𝑥,𝑦) = 𝑢𝑚 (𝑥,𝑦). (10.5)

The planning and execution of the whole sequence starts with the sequence onset signal. It triggers

the continuous increase of the baseline activity ℎ𝑑 . A simple linear dynamics is used with a time scale

𝜏𝑑 = 1/𝜅 controlled by the strength parameter 𝜅 > 0:

𝜏𝑑
dℎ𝑑 (𝑡)
d𝑡

=
∫

{𝑥 :𝑢𝑜𝑛 (𝑥)≥0}

𝑓 (𝑢𝑜𝑛 (𝑥))d𝑥, ℎ𝑑 (𝑡0) = ℎ𝑑0 < 0. (10.6)

The subpopulation of 𝑢𝑑 with highest pre-activation reaches the threshold for creating a bump first. The

moment of reaching the threshold is used to trigger the reach-to-grasp movement towards the specific

pipe. The bump is destabilized by inhibitory input (dashed line) from a bump in the working memory field

𝑢𝑤𝑚 which is initially driven by visual input. This input indicates that the hand of the human worker has

reached the exchange position to receive the pipe. Subsequently, the neural representation of the next

pipe to be manipulated by the robot becomes active in 𝑢𝑑 . This autonomous planning process continues

until the memory representation of the last pipe with the lowest pre-activation has been processed. To
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enable stable multi-bump solutions in the working memory field 𝑢𝑤𝑚 governed by the two-dimensional

Amari equation (10.1), an oscillatory connectivity function (4.4) is used.

10.4 Results

Figure 76: Snapshots of the sequence demonstration (a and c) and corresponding bump formation in the
memory field 𝑢𝑚 spanned over the dimensions color and length (b and d).

The robot Sawyer watches the human assistant handing over 4 pipes to the worker in the following or-

der: pink-medium→ orange-medium→ orange-short→ dark-blue-long. Figure 76 shows two snapshots

at the beginning and the end of the demonstration together with the corresponding activity patterns in the

sequence memory field. At time 𝑡 = 15s a single bump has evolved representing the pink-medium pipe.

Immediately after the transfer of the dark-blue-long pipe, at time 𝑡 = 57s, all 4 pipes are represented in

memory with bump amplitudes reflecting serial order. Figure 77 depicts the time course of the sequential
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bump formation relative to sequence onset at time 𝑡 = 0.

Figure 77: Temporal evolution of population activities in the memory field𝑢𝑚 during sequence demonstra-
tion. The start and stop signals are presented at times 𝑡 = 0 and 𝑡 = 80s, respectively.

Figure 78: (a) Comparison of the temporal evolution of population activities in the decision field 𝑢𝑑 (solid
line) and the working memory field 𝑢𝑤𝑚 (dashed line). The start and stop signals are presented at 𝑡 = 0
and 𝑡 = 110s, respectively . (b) The worker is still mounting a pipe while Sawyer is already grasping the
next one. (c) Bump formation in the decision field 𝑢𝑑 , and (d) multi-bump pattern in the working memory
field 𝑢𝑤𝑚 at time 𝑡 = 86s.

During joint task execution together with the human operator, Sawyer takes the role of the giver. Figure

78a depicts the temporal evolution of suprathreshold activity of the subpopulations in the decision field 𝑢𝑑
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Figure 79: Comparison of temporal evolution of population activities in the decision field 𝑢𝑑 (solid line)
and the working memory field 𝑢𝑤𝑚 (dashed line) for a faster sequence planning and execution. The start
and stop signals are presented at times 𝑡 = 0 and 𝑡 = 100s, respectively.

representing motor plans directed towards the different pipes (solid lines). The field dynamics activates the

individual handovers in the correct serial order. The suprathreshold activity of each subpopulation decays

back to resting state due to the inhibition from bumps evolving at corresponding sites in the working

memory field 𝑢𝑤𝑚 (dashed lines). The video snapshot (Fig. 78b) taken at time 𝑡 = 86s shows the

worker mounting a pipe that she had picked from her workspace. By comparing the population activity in

the decision field at the same time (Fig. 78c), it becomes clear that Sawyer already starts the handover

of the dark-blue-long pipe that the worker has to assemble next. Note that the duration of the whole

sequence during joint execution is significantly longer than during demonstration (compare Fig. 77) since

the operator assembles additional pipes located within reach on her side.

As shown in Figure 79, the robot is able to accelerate the planning of the entire transfer sequence to adapt to

an operator executing the assembly steps with higher speed. This acceleration can be achieved by applying

an additional input to the decision field. It may for instance represent a request gesture signaling to the

robot that the operator awaits the next pipe [49]. The additional input either increases the baseline activity

ℎ𝑑0 or the slope of the linear ramp-to-threshold dynamics (10.6). Since in modern assembly manufacturing

the ordering of activities is often left to the discretion of the operator, the robot should also be able to

adapt to changes in serial order of task execution [163]. The activation-based learning implemented in

the DNF model ensures that a single task demonstration is sufficient to establish an activation gradient

representing the new order. However, to memorize simultaneously the order preferences of different

operators, activation gradients in separate memory fields have to be established (for a DNF representation

of different serial orders in a single memory field see [144]). During joint task execution, the read-out of

the correct memory representation can be ensured, in principle, by a multiplicative gating of the different

memory inputs (defined by (10.5)) to the decision field 𝑢𝑑 with a user-specific sensory signal. Only the

127



CHAPTER 10. DNF MODEL FOR PLANNING OF A ROBOTICS ASSISTANT

memory pattern which gets this additional support preshapes 𝑢𝑑 and consequently affects sequence

planning.

10.5 Conclusion

In this chapter, we have applied the two-field integrator model in DNF architecture that support natural and

efficient human-robot cooperation. The test scenario is taken from modern manufacturing and assembly

environment that is characterized by a high variability in the built process. To provide a productivity benefit,

a robotic assistant should be able to efficiently acquire and adapt knowledge about the order of activities

and workflow.

The presented computational principles and results may be used to address several key challenges that

have been identified for close human-robot collaborative work in manufacturing environments [107, 151].

First, preferences about task completion are prone to change since the order of activities in many manual

processes are left to the discretion of the human operators [163]. As already discussed before, the learning

by demonstration paradigm can be in principle applied to quickly teach different serial orders represented

by activation gradients in separate dynamic fields.

As shown in Figs. 76 and 78, the one-shot learning of serial order allows the robot to act in advance

of the operator’s need, rather than just reacting to a request. For efficient and successful joint action

it is highly desirable that an assistant shows such a proactive attitude also when the operator makes

an error [107]. To avoid time consuming disassembly steps, the robot should be able to detect and

communicate errors before they manifest in the construction work (a capacity termed proactive resilience

in engineered industrial systems [158]). In previous research, we have developed a control architecture for

natural HRI based on the DNF framework. It implements a highly context-sensitive mapping of an observed

action of the co-worker onto an adequate complementary robot behavior. This mapping takes into account

different task-related and user-related factors including an error monitoring capacity [17, 18, 141]. Neural

populations encode in their suprathreshold activity a mismatch between which assembly step the operator

should execute (shared task knowledge) and the predicted assembly step inferred from the observed motor

behavior. For the pipe assembly paradigm, assuming that the robot has learned the serial order of the

entire assembly sequence, it may detect a serial order error at the moment when the operator grasps a

specific pipe. An adequate complementary robot behavior would be to inform the operator verbally or with

a communicative gesture about the error [19].
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In future work, we plan to exploit the neural computations of the integrator model in an existing DNF-based

architecture for fluent joint action in a shared task. The challenge will be to smoothly integrate a series

of actions serving an operator like in the present joint assembly study with assembly work that the robot

itself performs. Since a tight synchronization of activities between robot and operator is often required

to achieve a shared goal [163], the robot should not only be able to adapt to changing preferences for

workflow but also to flexibly time its goal-directed actions. We have recently applied the neural integrator

model to measure and reproduce time intervals between sensory-motor events [172]. As a key processing

mechanism to achieve adaptive motor timing, a bump reflecting measured duration in its amplitude affects

either the resting state or the slope of the ramp-to-threshold dynamics in the decision field.

129



11DNF model for value-based decision

making1

11.1 Introduction

The second robotics experiment is a simulated material handling system in which a mobile robot transports

parts or subassembly parts between workstations. Specifically, the robot has to search at two workbenches

where a required part may appear with a certain probability in a fixed period of time. Humans and other

animals show in a scenario with constant probabilities a choice behavior known as the matching strategy:

the fraction of choices made to any option will match the fraction of total success (or reward) earned

from that option [76, 104]. Using the neural integrator model to incorporate short-term memories of

past choices and past successes in the decision process endows the robot with the matching behavior.

Importantly, we show that the robot autonomously adapts its internal valuation of the competing alternatives

and consequently its choice behavior to unsigned changes in the success probabilities [147]. The robot is

thus better able to cope with specific challenges in more flexible and uncertain manufacturing systems.

11.2 Experimental setup

The experiment is inspired by challenges for material handling robots in more flexible and therefore less

predictable manufacturing processes [31]. Such robots play a central role in industrial assembly lines by

transporting parts or subassembly parts between workstations. Figure 80a shows a top view of a simulated

environment in which a mobile robot equipped with a forklift has to pick up a bulky object positioned on a

pallet to deliver it to an operator located in an uploading area. For future real-world tests, it is interesting

to notice that the DNF approach to cognition is highly compatible with the attractor dynamics approach

to autonomous navigation of mobile robots [20] (see the Discussion). Recently, the approach has been

successfully tested in a factory environment cluttered with stationary and moving obstacles [108, 111].

1The content of this chapter is based on [174].
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For the material handling task, the main challenge for the robot is to deal with an environment characterized

by uncertainty. The searched object may arrive in a certain time interval Δ𝑇 with independent probabilities

at two possible locations, A and B, which are hidden from the robot’s camera view. To maximize the

success rate of the object search over a longer time period, the robot has to adapt its choice behavior to

the statistics of the environment.

We assume that during the duration𝑇 of the experiment, the robot is forced to make every Δ𝑇 time units

a decision to search at A or B, and then deliver the object at the upload area, or, in case of no success,

return directly to the park position. For the evaluation of the robot performance thus exist 𝑁 = 𝑇 /Δ𝑇

trials. For simplicity, we further assume the existence of an external computer clock to trigger the start of

each decision process. Note that the neural integrator model (10.2) may be used as well to autonomously

measure and reproduce time intervals [172]. We leave this interesting issue for future work (see the

Discussion). Since the probabilities of finding the specific object at the two locations are independent, in

each trial, both locations, only one of the locations or none of the locations guarantee success. Once the

object has arrived at a particular location it stays there until the robot picks it up.
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Figure 80: (a) Top-view of a simulated factory environment with a park position for the mobile robot, two
target locations A and B, and an uploading area. (b) Robot at the moment of making a decision to search
the object at location A (left side) or location B (right side). (c) Robot finds the object at location A (left) to
pick it up and deliver it at the uploading area.

11.3 Model architecture

The DNF model guiding the robot’s decisions is inspired by findings in neurophysiological and behavioral

studies investigating choice behavior in conceptually similar tasks with humans and other animals [104,

147]. They suggest that it is necessary to integrate in the decision process both past choices and past

successes in order to capture an optimal probabilistic strategy in stationary as well as dynamically changing

environments.

Figure 81 depicts the model architecture with three coupled fields spanned over the behavioral dimension

“movement direction”. Bumps in the decision field 𝑢𝑑 at locations encoding target A to the left or target

B to the right of the start position drive the activation of two neural integrators (𝑢𝑟 , 𝑣𝑟 ) and (𝑢𝑐, 𝑣𝑐). They
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Figure 81: Model architecture consisting of a decision field 𝑢𝑑 , and fields for choice and success inte-
gration, (𝑢𝑐, 𝑣𝑐) and (𝑢𝑟 , 𝑣𝑟 ), respectively. Solid arrows indicate excitatory and dashed arrows inhibitory
connections between fields.

represent, respectively, cumulative success and cumulative choice for each of the options. The input to

the 𝑢𝑐 -field is given by

𝐼𝑐 (𝑥, 𝑡) =
∫
Ω
𝑤𝑙𝑎𝑡 (𝑥 − 𝑦) 𝑓 (𝑢𝑑 (𝑦, 𝑡) − 𝜃 )d𝑦, (11.1)

whereas the 𝑢𝑟 -field receives the input

𝐼𝑟 (𝑥, 𝑡) = 𝐾𝑟 𝑓 (𝑢𝑑 (𝑥, 𝑡) − 𝜃 )𝑅(𝑥), (11.2)

where 𝐾𝑟 > 0 is a scaling factor. The integration of suprathreshold activation in 𝑢𝑑 is gated by a function

𝑅(𝑥) which indicates whether the robot’s camera has detected the color-coded object or not, that is,

𝑅(𝑥) = 1 if the object is found and 𝑅(𝑥) = 0 if not.

The decision field 𝑢𝑑 receives in trial 𝑛 the summed activation of the two success integration fields at

the end of trial 𝑛 − 1, 𝑢𝑟𝑛−1 + 𝑣𝑟𝑛−1 , as excitatory input whereas the summed activation of the two choice

integration fields, 𝑢𝑐𝑛−1 + 𝑣𝑐𝑛−1 , is taken as inhibitory input:

𝐼𝑑 (𝑥, 𝑡) =
(
𝑢𝑟𝑛−1 (𝑥) + 𝑣𝑟𝑛−1 (𝑥)

)
− 𝑐𝑑

(
𝑢𝑐𝑛−1 (𝑥) + 𝑣𝑐𝑛−1 (𝑥)

)
, (11.3)
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where 𝑐𝑑 > 0 is a scaling parameter. The different input signs may be understood by the fact that the

simple strategy to always choose the target with higher success probability will not maximize the overall

success rate. Due to the persistence of the object at the target location, the likelihood to find the object

at the less likely location increases with the time elapsed from the last choices. The robot should thus

visit from time to time also this location. The net effect of the inputs to 𝑢𝑑 at the beginning of each trial

is a preshaping of the neural subpopulations encoding locations A and B. It sets on a trial-by-trial basis

the initial condition for the bump formation which is initiated by the ramp-to-threshold dynamics (10.6).

An open question is how many past trials should inform the current decision. The issue of the integration

timescale is particularly relevant for environments in which the value (success frequency) of each option

may change without warning [80]. Following the discussion in [147], we address this issue by resetting

the activation pattern of the integrators to their initial values after a fixed number of 𝑁𝑟𝑒 = 8 trials.

11.4 Results

In the first simulation experiment, we assume that the mobile robot knows the true success probability of

each option either through learning in a stationary environment or by instruction. Under this condition,

matching behavior is known to represent the optimal strategy for maximizing the overall success [104,

147]. The “matching law” states that an agent allocates choices in a proportion that matches the relative

success experienced on these choices. For the present two-choice search task, this translates to

𝑁𝑖/(𝑁𝐴 + 𝑁𝐵) = 𝑆𝑖/(𝑆𝐴 + 𝑆𝐵), 𝑖 = 𝐴, 𝐵, (11.4)

where 𝑁𝑖 represents the number of times location 𝑖 has been chosen and 𝑆𝑖 the number of times the

robot has found the object at that location. The prior task knowledge is modeled as additional Gaussian

inputs to the subpopulations representing directions A and B with strengths proportional to the success

probabilities [50]:

𝐼𝑝𝑟𝑜𝑏 (𝑥) = 𝐴𝑃𝐴𝑒 (−(𝑥−𝑥𝑃𝐴 )
2/2𝜎2𝑃) +𝐴𝑃𝐵𝑒 (−(𝑥−𝑥𝑃𝐵 )

2/2𝜎2𝑃), (11.5)

where 0 < 𝐴𝑃𝐴 < 1 and 0 < 𝐴𝑃𝐵 < 1.

The decision process in the first trial thus starts from a two-peak, bimodal resting state shown in Figure 82.

Figure 83 illustrates the decision process in four successive trials in which the prior probabilities are 30%

and 40% for target A and target B, respectively. The activity patterns in 𝑢𝑑 at the start (top) and the end of

each trial (middle) together with the pattern in 𝑢𝑐 at the end of the trial (bottom) are shown. The decision
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Figure 82: Initial state of the decision field 𝑢𝑑 at the beginning of trial 𝑛 = 1 which is shaped by the
prior knowledge about the success probabilities for A and B given by (11.5) with 𝐴𝑃𝐴 = 0.3, 𝐴𝑃𝐵 = 0.7,
𝜎𝑃 = 0.75.

in the first trial reflects the prior information that the location B has higher success probability. In the

second trial, the robot decides to go again to B despite the fact that the prior decision was unsuccessful

and the inhibition from the bump in 𝑢𝑐 has reduced the preshape at position B. The decision is again

unsuccessful. In the third trial, the robot changes its decision and finds the object at A. The switch is due

to the further increased inhibition from the pattern in 𝑢𝑐 reflecting two B choices. In the fourth trial, the

robot moves again to A due to the excitation from 𝑢𝑟 , reflecting the success in the last trial (not shown),

and the relatively smaller inhibition from 𝑢𝑐 at A compared to B.

Trial no.
Available objects

Decision Success
Left Right

1 1 0 right no
2 1 0 right no
3 1 0 left yes
4 0 0 left no
5 0 1 right yes
6 1 0 right no
7 1 1 left yes
8 0 1 right yes

Table 3: Availability of objects in locations A and B, robot’s decisions and decision outcomes in a series
of 8 successive trials. The success probabilities for A and B are 30% and 40%, respectively.

Table 3 summarizes the results of eight successive trials with the choice pattern (B,B,A,A,B,B,A,B). It

shows that in the fourth trial no object was available and in three trials with an object available at A the

wrong decision was made. To systematically analyze the search efficiency of the robot and compare it

with the efficiency of two alternative search strategies, we run blocks of 𝑁 = 1000 trials with different

probability ratios for locations A and B. Search efficiency is defined as the total success achieved divided by
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Success
probability
(left/right)

Choice
ratio

(left/right)

Success
ratio

(left/right)

Search
efficiency
(DNF
model)

Search
efficiency

(ML
strategy)

Search
efficiency
(WSLS
strategy)

30/70 24.0/76.0 23.5/76.5 76.5% 70.0% 64.7%
30/40 40.1/59.9 40.1/59.9 79.0% 57.1% 67.1%
60/70 43.2/56.8 42.4/57.6 65.9% 53.9% 55.4%
50/20 73.2/26.8 74.4/25.6 82.3% 71.4% 70.6%
30/30 49.7/50.3 49.8/50.2 81.0% 50.0% 69.7%

Table 4: The performance of the DNF model is compared with the performances of the ML and WSLS
strategies in five blocks with different probability ratios for the two locations.

the number of available objects. The simple alternative strategies are (1) to go always to the location with

higher success probability, which we call the “Most Likely” (ML) strategy, and (2) to stay at the option if

successful and change the option if not, known in the literature as “Win-Stay-Lose-Switch” (WSLS) strategy.

The results in Table 4 show that for all tested ratios, the DNF model outperforms the two alternative

strategies. The difference in search efficiency is in particular evident for cases in which both targets have

similar but relatively low success probabilities (e.g., 30/40). Moreover, the distribution of choices among

the two alternatives generated by the DNF model closely matches the success ratio.

Block
Success
probability
(left/right)

Choice
ratio

(left/right)

Success
ratio

(left/right)

Search
efficiency
(DNF
model)

Search
efficiency

(ML
strategy)

Search
efficiency
(WSLS
strategy)

1 30/40 47.0/53.0 41.7/58.3 85.7 % 57.1 % 71.4%
2 60/20 58.0/42.0 71.2/28.8 73.8 % 25.0 % 66.2%

Table 5: The performance of the DNF model is compared with the performances of the ML and WSLS
strategies in a dynamic environment with two blocks with different probability ratios for the two locations.
The change in the probabilities after 𝑁 = 100 trials is not signaled to the robot. For the ML strategy, we
assume that the robot still believes in the second block that location B is the more likely one.

In a second experiment, we tested the situation in which the robot searches the object at A and B without

prior knowledge about the success probability at each location. In addition, the probabilities change after

𝑁 = 100 trials without warning and the robot has to adjust the distribution of decisions among the

alternatives to this new situation to guarantee a high search efficiency. The first decision process in 𝑢𝑑

now starts from equally pre-activated populations representing the possible movement directions A and B

(compare Fig. 82). Figure 84a shows the activity distribution in 𝑢𝑑 at the beginning of trial 16 in a block
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Figure 83: Snapshots of the simulator illustrating the robot’s decisions in the first 4 trials of the experiment.
For details see the text and Table 3.

in which the probabilities for A and B are 30% and 40%, respectively. The activity pattern is shaped by

the summed activations of the choice and success integrators, 𝑢𝑐 + 𝑣𝑐 (Fig. 84b) and 𝑢𝑟 + 𝑣𝑟 (Fig. 84c),

respectively. The preshape pattern predicts the decision to go to target B. Figure 84 (bottom row) depicts

the same activation snapshots after trial 110 which is part of a block in which the success probabilities

have changed (at trial 100) to 60% for A and 20% for B. Now the preshape pattern in𝑢𝑑 predicts location A

as current choice. Figure 85 compares for both blocks of 𝑁 = 100 trials the cumulative choices of target

A and target B (blue curve) with the average ratio of success. Two features of the robot’s behavior are

notable. First, the robot appears to adjust quite quickly its decisions to the unsigned change in success
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Figure 84: (a-c) First block of trials with 30% and 40% success probability for A and B, respectively. The
resting state at the beginning of trial 16 is shown in the decision field 𝑢𝑑 (a) which is shaped by the inputs
from the choice integrator (b) and the success integrator (c). (d-f) Second block of trials with 60% and
20% success probability for A and B, respectively. The resting state at the beginning of trial 110 in shown
in the decision field 𝑢𝑑 (d) which is shaped by the inputs from the choice integrator (e) and the success
integrator (f).

probabilities. Second, the robot chooses the location with lower probability more often than expected

if it knew the true success probabilities, a well-known phenomenon described in the Cognitive Science

literature as undermatching [80, 104]. Importantly, however, the robot shows a high search efficiency in

both blocks with 85.7% and 73.8%, respectively. Again, the DNF model outperforms the two alternative

strategies (compare Table 5).

In the present study, the two integrators were reset to their initial values every 8 trials. Intuitively it is clear

that the integration time which maximizes the success rate for a given time period depends on the statistics

of the environment. Under relatively stable conditions, it is better to take into account a large number of

past choices and successes to estimate the current values of competing options. This is equivalent to

introducing a constant prior belief in the model like shown in Figure 82. In nonstationary environments,

however, the robot should weight recent events more heavily, as old ones may not be informative anymore

for the current choice. The question how the neural integrators might autonomously adapt the integration

time window to optimize search efficiency is a current research topic [80] but goes beyond the scope of this

paper. It is interesting to notice however that the neural activations representing both options in (𝑢𝑐, 𝑣𝑐)

might be used to “count” the total number of past choices since the last reset. All one has to assume is

that the reset mechanism is triggered when the total activation in the choice integration field reaches a

pre-defined read-out threshold.
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Figure 85: Dynamic matching behavior. The blue curve indicates the cumulative choices of target A and
target B. The black lines represent the average ratio of success (B/A) within each of the two blocks of
𝑁 = 100 trials: B/A = 40/30 in the 1st block and 20/60 in the 2nd block. Search efficiency: 85.7% (1st
block) and 73.8% (2nd block).

11.5 Conclusion

In this Chapter, we have used the two-field model (10.2) as a part of a control architecture of a mobile robot

searching for an object at two different positions. Time-varying persistent activity of neuronal populations

in the model represents gradual accumulation of evidence of past successes and choices that is used to

guide robot’s trial-by-trial decision process.

We tested our approach in two scenarios. In the first experiment we assumed that the robot knows the

true probability of finding an object in each possible location. In the second scenario, the probabilities

were not known a priori to the robot. We compared the efficiency of our DNF model with two alternative

search strategies, namely “Most Likely” strategy and “Win-Stay-Lose-Switch” strategy. We demonstrated

that our model outperforms both of them in both tested scenarios, for all tested probability ratios.
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12General discussion

12.1 Thesis summary

The goal of this thesis was to develop, rigorously analyze and apply a neural field model that provides

a two-dimensional bump attractor, determined by a continuum of positions and amplitudes. The bump

attractor network is able to self-sustain input-induced neural population activity at any level. This is achieved

by combining a lateral-inhibition type network connectivity with local excitatory and inhibitory feedback

mechanisms.

The proposed model is based on two coupled field equations of Amari type which allowed us to apply

analytical and numerical tools that have been developed since Amari’s seminal work. We analyzed and

directly compared the conditions for the existence and stability of bump solutions of the Amari and the

two-field model. The main conclusion is that in the absence of external input both models show the same

qualitative behavior. Employing numerical continuation techniques allowed us to track bump solutions

as model parameters are varied. For the case of spatially homogeneous initial conditions, the numerical

results confirm the analytical findings about bump solutions. We then extended our numerical investigation

of the two-field model to the case with spatially inhomogeneous initial conditions. Unlike the previous case,

the neural network is able to stabilize bumps with a continuum of shapes depending on the initial condition.

We also observed an additional branch of stable subthreshold bumps and branches of two- and three-bump

solutions, which is not observed in the case of the Amari model.

Chapter 8 described the study of input-driven bump solutions of the two-field model which is guided by

the new mathematical insights. With the goal to explain experimental findings in working memory tasks,

we systematically compared the pattern formation process of the Amari and the two-field model when

multiple inputs were applied sequentially or in parallel. Several distinct features of the new model were

observed. First, two stable regions of excitation may exist at a distance where the bumps in the Amari

model completely merge or drift apart. The two-field model shows a pattern of attraction of two nearby
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bumps that is qualitativeley consistent with the behavior of biophysically more realistic bump attractor

networks. Moreover, the lateral feedback excitation of the two-field model facilitates in general the formation

of memory bumps. The two-field model thus predicts a higher working memory capacity than the Amari

model. Second, the two-field model supports the existence of stable subthreshold activity patterns which

might be linked to the notion of subconscious memory representations described in the experimental

literature.

Unlike in bistable attractor models of Amari type, the baseline activity of the two-field neural integrator

is not a stable state. A forgetting mechanism can thus not be implemented by simply applying a suffi-

ciently strong inhibitory input that destabilizes existing bumps. For working memory applications, we have

proposed a simple gating mechanism for the local feedback which restores the stable resting state of the

Amari model without destroying the existence of subthreshold bump solutions.

Simulations of the stochastic version of the two-field model revealed that the noise-induced drift of a

single bump decreases with increasing bump amplitude associated with stronger inputs. Larger bump

amplitudes also greatly reduce the spatial interaction effect of nearby bumps representing similar memory

items. These model predictions may guide future experimental and theoretical work which has not yet

systematically investigated the impact of input features such as strength and duration on working memory

precision.

The remaining part of the thesis was dedicated to the applications of the new model in the context

of robotics research. Chapter 9 presented modeling results showing how the neural integrator can be

used to first measure and subsequently reproduce time intervals. We discuss the results as an important

step towards endowing autonomous robots with a sophisticated temporal cognition capacity. Chapters

10 and 11 were devoted to the application of the neural integrator to two real-world robotics tasks in a

manufacturing environment. In the first experiment, the robot learned by observation the sequential order

of object transfers between an assistant and an operator to subsequently substitute the assistant in the joint

task. In the second experiment, the robot made a trial-by-trial decision to search for an object at locations

where it may appear with some probability. The results show that the robot autonomously develops an

efficient search strategy based on the accumulated evidence from previous trials.
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12.2 Future work

The work presented in this thesis raised a number of interesting questions and possible directions for

future research on the mathematical analysis, possible extensions and further applications of the two-field

model.

Model analysis

The linear stability analysis of the two field model given in Chapter 6 was performed with initial condition

of the model set to 𝑢 (𝑥, 0) + 𝑣 (𝑥, 0) = 𝐾 . It would be interesting to extend the linear stability analysis

presented in Chapter 6 to the case of inhomogeneous initial conditions 𝑢 (𝑥, 0) + 𝑣 (𝑥, 0) = 𝐾 (𝑥) or the

presence of an inhomogeneous external drive 𝐼 (𝑥). We expect that the analytical results will be in line

with the findings obtained with the numerical techniques in Chapter 7.

For the numerical analysis of bump solutions in Chapter 7, we employed the numerical continuation

technique with one bifurcation parameter only to study the existence and stability of bumps solutions. It

would be also interesting to perform a multi-parameter analysis to describe the exact regions for which

localized solutions exist in terms of more than one model parameter, for example following lines presented

in [54].

Model extensions

A number of natural extensions of the two-field model is possible. One direction is to consider a finite

signal propagation speed in neural tissue. Neural fields with delays were recently discussed in relation to

spiking neural networks. It was shown that the incorporation of delays leads to a larger range of possible

spatiotemporal patterns that are not observed otherwise [132, 133]. In the neural field literature, two

kinds of delays are typically introduced, constant delays and space dependent (propagation) delays [6,

153, 155]. In the simplest case of constant delays, the two field model becomes

𝜏𝑢
𝜕𝑢 (x, 𝑡)
𝜕𝑡

= −𝑢 (x, 𝑡) + 𝑣 (x, 𝑡) +
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, (𝑡 − 𝛿)) − 𝜃 )dx′ + 𝐼 (x, 𝑡), (12.1a)

𝜏𝑣
𝜕𝑣 (x, 𝑡)
𝜕𝑡

= −𝑣 (x, 𝑡) + 𝑢 (x, 𝑡) −
∫
Ω
𝑤 (x, x′) 𝑓 (𝑢 (x′, (𝑡 − 𝛿)) − 𝜃 )dx′, (12.1b)
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where the parameter 𝛿 is the transmission delay.

Unlike the Amari model, the two-field model is robust to changes in the tuning of the form of the

nonlinearity or the connectivity since the same functions are used for the 𝑢 -field and the 𝑣 -field. An

important consequence is that the assumption of a perfectly symmetric connectivity pattern in continuous

bump attractor networks can be relaxed. Model simulations with a slightly asymmetric connectivity profile

or a profile with random perturbations show that localized activity patterns with a biased or distorted shape

are stabilized by the network dynamics. Mitigating the inherent structural instability of bump attractor

models offers new perspective for applications of dynamic field theory that include for instance the learning

of the connectivity pattern [60]. We will explore this line of research in future work.

Model applications

Since the first robotics applications of the two-field model showed promising results, we plan to further

test the efficiency and robustness of the approach in challenging real-world experiments. Robotics research

on an adaptive timing capacity without the need to refer to an external clock mechanism is still in its infancy.

We therefore plan to integrate the two-field model in an existing DNF-based architecture for natural human-

robot interaction in order to advance towards a tight spatio-temporal coordination of actions between robot

and human.

The DNF model we presented in Chapter 11 was tested in a simulated factory environment. The

simulation results demonstrated that the integrator model can be successfully used to accumulate the

evidence form past choices and rewards which then guide the decision process. One of our future goals

is the validation of this approach in a real-world industrial environment which are normally cluttered with

dynamically changing obstacles. It’s thus important that the robot takes online sensory information into

account when deciding in which direction to move. We plan to address this challenge by integrating the

neural field approach to cognitive robotics with the so-called attractor dynamics approach to path planning

briefly discussed in section 11.5.
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In this appendix we discuss the methods used for numerical simulations presented in this thesis.

To find numerically approximate solutions of the neural field models we assume a finite domain 𝐿

which we discretize over space by dividing it into 𝑁 equal intervals. We then use the forward Euler method

to solve the resulting system of ODEs [88].

To compute the spatial convolution of𝑤 and 𝑓 formed by the integral∫ 𝐿

−𝐿
𝑤 (x, x′) 𝑓 (𝑢 (x′, 𝑡) − 𝜃 )dx′ (A.1)

we use the convolution theorem, stating that convolution in one domain equals point-wise multiplication

in the other domain, which may be written as

F {𝑓 ∗ 𝑔} = F {𝑓 } · F {𝑔}. (A.2)

By applying the inverse Fourier transform, F −1, we have

𝑓 ∗ 𝑔 = F −1{F {𝑓 } · F {𝑔}
}
. (A.3)

The transform requires normalization by multiplying the result by a constant scaling factor, here the length

of the domain 2𝐿 divided by the number of intervals 𝑁 . We then have

𝑓 ∗ 𝑔 =
𝐿

𝑁
· F −1{F {𝑓 } · F {𝑔}

}
. (A.4)

The majority of numerical simulations presented in this thesis were done in MATLAB using a forward Euler

method. To compute the spatial convolution we employed MATLAB’s in-built functions fft and ifft to

perform the Fourier transform and the inverse Fourier transform, respectively. An example of MATLAB

code is given in Listing A.1.

%% C l e a n i n g
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c l e a r ; c l c ; c l o s e a l l

%% S p a t i a l c o o r d i n a t e s

L = 4* p i ; N = 2^12 ; d x = 2* L /N ; xD im = ( − L + ( 0 : N −1 ) * d x ) ;

%% T emp o r a l c o o r d i n a t e s

d t = . 0 1 ; t s p a n = 0 : d t : 5 0 ; M = nume l ( t s p a n ) ;

%% S e t up f u n c t i o n s

k e r n e l = @( x , A_ex , s_e x , A_ i n , s _ i n , g _ i ) . . .

A_e x * e x p ( − 0 . 5 * ( x ) . ^ 2 / s _ e x ^2 ) − . . .

A _ i n * e x p ( − 0 . 5 * ( x ) . ^ 2 / s _ i n ^2 ) − g _ i ;

g a u s s = @( x , mu , s i gma ) e x p ( − 0 . 5 * ( x −mu ) . ^ 2 / s i gma ^ 2 ) ;

s i g m o i d = @( x , b e t a , t h e t a ) 1 . / ( 1 + e x p ( − b e t a * ( x − t h e t a ) ) ) ;

%% P a r am a t e r s

p ( 1 ) = 1000 ; % mu

p ( 2 ) = 2 ; % A_e x

p ( 3 ) = 1 . 2 5 ; % s _ e x

p ( 4 ) = 1 ; % A _ i n h

p ( 5 ) = 2 . 5 ; % s _ i n h

p ( 6 ) = 0 . 1 ; % g _ i n h

p ( 7 ) = 0 . 5 ; % t h e t a

p ( 8 ) = 1 ; % t a u

%% I n i t i a l d a t a

K = 0 . 0 ;

u _ f i e l d = −p ( 7 ) * on e s ( 1 , N ) ; v _ f i e l d = K − u _ f i e l d ;

%% C o n n e c t i v i t y f u n c t i o n and i t s FFT

w = k e r n e l ( xDim , p ( 2 ) , p ( 3 ) , p ( 4 ) , p ( 5 ) , p ( 6 ) ) ;
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wHat = f f t ( w ) ;

%% I n p u t

A _ I = 1 ; s i g m a _ I = 1 ;

I n p u t = z e r o s (M , N ) ;

I n p u t _ p a t t e r n = A _ I * g a u s s ( xDim , 0 , s i g m a _ I ) ;

I n p u t ( 1 / d t : 2 / d t , : ) = r e pma t ( I n p u t _ p a t t e r n , 1 + ( 1 / d t ) , 1 ) ;

%% Ma i n l o o p

f o r i = 1 :M

f = s i g m o i d ( u _ f i e l d , p ( 1 ) , p ( 7 ) ) ;

c o n v o l u t i o n = d x * i f f t s h i f t ( r e a l ( i f f t ( f f t ( f ) . * wHat ) ) ) ;

% 2− f i e l d mode l :

u _ f i e l d = u _ f i e l d + d t / p ( 8 ) * ( − u _ f i e l d + c o n v o l u t i o n + . . .

v _ f i e l d + I n p u t ( i , : ) ) ;

v _ f i e l d = v _ f i e l d + d t / p ( 8 ) * ( − v _ f i e l d − c o n v o l u t i o n + u _ f i e l d ) ;

end

%% P l o t r e s u l t s

f i g u r e ;

p l o t ( xDim , u _ f i e l d , ’ k ’ , ’ l i n e w i d t h ’ , 3 ) , h o l d on

p l o t ( xDim , v _ f i e l d , ’ − − k ’ , ’ l i n e w i d t h ’ , 3 ) , h o l d on

p l o t ( xDim , p ( 7 ) * on e s ( 1 , N ) , ’ : k ’ , ’ l i n e w i d t h ’ , 2 ) ;

x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ u ( x ) , v ( x ) ’ ) ;

a x = g c a ; s e t ( gca , ’ F o n t S i z e ’ , 2 0 ) ; s e t ( gca , ’ XL im ’ , [ − L L ] )

Listing A.1: Example of code written in MATLAB which can be used to reproduce Figure 47.

Numerical simulations of the model shown in Chapter 9 were done in Julia [15] using a forward Euler

method. To compute the spatial convolution we used a fast Fourier transform (FFT), using Julia’s package

FFTW with functions fft and ifft to perform the Fourier transform and the inverse Fourier transform,

respectively. An example of Julia code is given in Listing A.2.
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# Load p a c k a g e s

u s i n g P l o t s , FFTW

# S e t up f u n c t i o n s

g a u s s ( x , A , s i gma ) = A . * e x p . ( − 0 . 5 . * ( x ) . ^ 2 . / s i gma ^2 )

wmex ( x , A_e , A_ i , s_e , s _ i , g _ i n h ) = g a u s s ( x , A_e , s_e ) . −

g a u s s ( x , A_ i , s _ i ) . − g _ i n h

f u n c t i o n c o n v ! ( x , wHat )

c o p y = f f t ( x )

@ . c o p y . = wHat . * c o p y

i f f t ! ( c o p y ) ; @ . x . = r e a l ( c o p y )

x . = i f f t s h i f t ( x )

end

f u n c t i o n r unNF ( )

# S p a t i a l c o o r d i n a t e s

L = 60 ; d x = 0 . 0 0 5 ; x = c o l l e c t ( − L / 2 : d x : L / 2 ) ; N = l e n g t h ( x )

# T emp o r a l c o o r d i n a t e s

tma x = 3 ; d t = 0 . 0 0 1 ; s t e p s = c o l l e c t ( 0 : d t : tma x )

wHat = f f t ( wmex ( x , 3 , 1 . 5 , 1 , 3 , 0 . 5 ) ) # FFT o f w f o r c o n v o l u t i o n

s a m p l e _ i n t e r v a l s = c o l l e c t ( 5 0 0 : 5 0 : 1 0 0 0 ) # i n t e r v a l s t o measu re ,

# r a n g i n g f r om 500

# t o 1000 ms

# P a r am e t e r s

A _ i n p u t = 1 . 7 5 ; s i g m a _ i n p u t = 2 # f o r g a u s s i a n i n p u t

t h e t a = 0 . 25 # f i r i n g t h r e s h o l d

e p s i = 0 . 01 # n o i s e s t r e n g t h

mu = 1000 # s i g m o i d s t e e p n e s s
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# I n i t i a l i z e f i e d l s

u0 = 0 . 225 . * on e s ( l e n g t h ( x ) ) ; v0 = 0 . 5 . − c o p y ( u0 )

u = c o p y ( u0 ) ; v = c o p y ( v0 )

max_u = z e r o s ( l e n g t h ( s t e p s ) , l e n g t h ( s a m p l e _ i n t e r v a l s ) )

u _ s a v e = z e r o s ( l e n g t h ( x ) , l e n g t h ( s a m p l e _ i n t e r v a l s ) )

f o r s amp l e i n 1 : l e n g t h ( s a m p l e _ i n t e r v a l s )

u = c o p y ( u0 ) ; v = c o p y ( v0 )

f o r i i n 1 : l e n g t h ( s t e p s )

# A p p l y i n p u t s o f d i f f e r e n t d u r a t i o n s

i f 0 . 5 / d t < i < ( 0 . 5 / d t + s a m p l e _ i n t e r v a l s [ s amp l e ] )

i n p u t = g a u s s ( x , A _ i n p u t , s i g m a _ i n p u t )

e l s e

i n p u t = z e r o s ( l e n g t h ( x ) )

end

# Upd a t e f i e l d s

f = 1 . 0 . / ( 1 . 0 . + e x p . ( −mu . * ( u . − t h e t a ) ) )

c o n v = d x . * c o n v ! ( f , wHa t )

u . = u . + d t . * ( − u . + v . + c o n v . + i n p u t

. + s q r t . ( e p s i ) . * r a n d n ( l e n g t h ( x ) ) )

v . = v . + d t . * ( − v . + u . − c o n v )

max_u [ i , s amp l e ] = maximum ( u ) ; u _ s a v e [ : , s amp l e ] = u

end # end c u r r e n t s amp l e

end # end s am p l i n g

r e t u r n x , s t e p s , u , v , max_u , u _ s a v e

end

# S i m u l a t e t h e measu r emen t e p o ch
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@t ime x , t , u , v , m a x _ u _ f i n a l , u _ f i n a l = r unNF ( )

# G e t bump a m p l i t u d e s a t t h e end o f t h e measu r emen t e p o c h

ma x _ v a l s = m a x _ u _ f i n a l [ end , : ]

# P l o t t h e r e s u l t s

h1 = p l o t ( x , u _ f i n a l , x l i m s = ( − 1 5 , 1 5 ) , d p i = 300 ,

x t i c k f o n t = f o n t ( 1 2 , ” A r i a l ” ) , y t i c k f o n t = f o n t ( 1 2 ) ,

x l a b e l = ” x ” , y l a b e l = ” u ( x ) ” , l e g e n d = : f a l s e )

d i s p l a y ( h1 )

Listing A.2: Example of code written in Julia v1.5.3 which can be used to reproduce Figure 66.

For performing numerical continuation in Chapter 7 we use the method described in [123] and adapted

MATLAB code available in [8]. The main advantage of this method is that it can be applied directly to

the full integral model. This is possible due to the usage of Newton-GMRES solvers combined with a fast

Fourier transform (FFT) employed for computing the convolution term [123].

Numerical simulations of the stochastic models in Chapter 8 were done using an Euler-Maruyama

method.
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BInitial conditions and parameters used in

Chapters 10 and 11

Initial conditions used in Chapter 10

For the model simulations, the initial conditions of the fields governed by the Amari dynamics, 𝑢𝑝𝑒𝑟 , 𝑢𝑜𝑛,

𝑢𝑤𝑚 and𝑢𝑑 are defined by the inhibition parameterℎ. For the coupled two-field model the initial conditions

are given by:

𝑢𝑚 (𝑥,𝑦, 0) = −1, (B.1a)

𝑣𝑚 (𝑥,𝑦, 0) = −0.25 − 𝑢𝑚 (𝑥,𝑦, 0). (B.1b)

Initial conditions used in Chapter 11

The initial condition of the decision field at the start of simulation trial 𝑛 is given by:

𝑢𝑑𝑛 (𝑥, 0) =


𝐼𝑝𝑟𝑜𝑏 (𝑥) − ℎ𝑑0 if 𝑛 = 1,(
𝑢𝑟𝑛−1 (𝑥) + 𝑣𝑟𝑛−1 (𝑥)

)
− 𝑐𝑑

(
𝑢𝑐𝑛−1 (𝑥) + 𝑣𝑐𝑛−1 (𝑥)

)
− ℎ𝑑0,

otherwise.

(B.2)

The initial condition for the choice integration layer (𝑢𝑐, 𝑣𝑐) in the first trial and after each reset is given by

𝑢𝑐 (𝑥, 0) = −0.5, (B.3a)

𝑣𝑐 (𝑥, 0) = −𝑢𝑐 (𝑥, 0). (B.3b)
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The initial condition for the success integration layer (𝑢𝑟 , 𝑣𝑟 ) in the first trial and after each reset is given

by

𝑢𝑟 (𝑥, 0) = −0.5, (B.4a)

𝑣𝑟 (𝑥, 0) = 𝐼𝑝𝑟𝑜𝑏 (𝑥) − 𝑢𝑟 (𝑥, 0). (B.4b)

Model parameters used in Chapter 10

See Table 6.

Perception field 𝑢𝑝𝑒𝑟
𝜏𝑝𝑒𝑟 3
𝑤𝑙𝑎𝑡 𝐴𝑙𝑎𝑡 = 6, 𝜎𝑙𝑎𝑡 = 0.65, 𝑔𝑙𝑎𝑡 = 2
𝐼𝑡 𝐴𝐼 = 6, 𝜎𝐼 = 0.75, 𝑔𝐼 = 0
ℎ𝑝𝑒𝑟 1.5

Sequence onset field 𝑢𝑜𝑛
𝜏𝑜𝑛 1
𝑤𝑚𝑒𝑥 𝐴𝑒𝑥 = 4, 𝐴𝑖𝑛 = 2, 𝜎𝑒𝑥 = 1.5, 𝜎𝑖𝑛 = 2.5, 𝑔𝑚𝑒𝑥 = 0.15
𝐼𝑜𝑛 𝐴𝐼 = 1.25, 𝜎𝐼 = 1.5, 𝑔𝐼 = 0
ℎ𝑜𝑛 0.5

Memory field 𝑢𝑚, 𝑣𝑚
𝜏𝑚 3
𝑤𝑚𝑒𝑥 𝐴𝑒𝑥 = 6, 𝐴𝑖𝑛 = 3.5, 𝜎𝑒𝑥 = 1.5, 𝜎𝑖𝑛 = 2.25, 𝑔𝑚𝑒𝑥 = 0
𝜅 0.04

Decision field 𝑢𝑑
𝜏𝑑 2
𝑤𝑙𝑎𝑡 𝐴𝑙𝑎𝑡 = 5, 𝜎𝑙𝑎𝑡 = 0.75, 𝑔𝑙𝑎𝑡 = 1.5

ℎ𝑑
ℎ𝑑0 = 13.5, 𝜅 = 0.0085 (fast recall),

𝜅 = 0.004 (slower recall)

Working memory field 𝑢𝑤𝑚
𝜏𝑤𝑚 2
𝑤𝑜𝑠𝑐 𝐴𝑜𝑠𝑐 = 2.4, 𝑏 = 0.7
ℎ𝑤𝑚 2.5

Table 6: Parameter values of the field equations used for sequence learning and planning.

Model parameters used in Chapter 11
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See Table 7.

Decision field 𝑢𝑑
𝜏𝑑 1
𝑤𝑙𝑎𝑡 𝐴𝑙𝑎𝑡 = 2, 𝜎𝑙𝑎𝑡 = 0.75, 𝑔𝑙𝑎𝑡 = 1
𝜖1/2 0.025
ℎ𝑑 ℎ𝑑0 = 1, 𝜏ℎ𝑑 = 7
𝑐𝑑 0.05

Choice integration field 𝑢𝑐 , 𝑣𝑐
𝜏𝑐 1

𝑤𝑚𝑒𝑥 𝐴𝑒𝑥 = 4, 𝐴𝑖𝑛 = 2, 𝜎𝑒𝑥 = 1.5, 𝜎𝑖𝑛 = 3, 𝑔𝑚𝑒𝑥 = 0.25

Success integration field 𝑢𝑟 , 𝑣𝑟
𝜏𝑟 1
𝑤𝑚𝑒𝑥 𝐴𝑒𝑥 = 4, 𝐴𝑖𝑛 = 2, 𝜎𝑒𝑥 = 1.5, 𝜎𝑖𝑛 = 3, 𝑔𝑚𝑒𝑥 = 0.25
𝐾𝑟 𝐾𝑟 = 0.02 (static case), 𝐾𝑟 = 0.035 (dynamic case)

Table 7: Parameter values of the field equations used for value-based decision making.

Numerical model simulations

Numerical simulations of the models used in Chapters 10 and 11 were done in MATLAB using a forward

Euler method with parameters given in Tables 8 and 9, respectively.

Assembly task
space 𝐿 = 50, 𝑁 = 1000, d𝑥 = 2𝐿/𝑁 = 0.1
time Δ𝑇 = 100,𝑀 = 10000, d𝑡 = Δ𝑇 /𝑀 = 0.01

Table 8: Spatial and temporal discretisation of the model used in Chapter 10.

Value-based decision making
space 𝐿 = 20, 𝑁 = 1000, d𝑥 = 2𝐿/𝑁 = 0.04
time Δ𝑇 = 10,𝑀 = 1000, d𝑡 = Δ𝑇 /𝑀 = 0.01

Table 9: Spatial and temporal discretisation of the model used in Chapter 11.
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